Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/schedulers/test_scheduler_euler.py
1448 views
1
import torch
2
3
from diffusers import EulerDiscreteScheduler
4
from diffusers.utils import torch_device
5
6
from .test_schedulers import SchedulerCommonTest
7
8
9
class EulerDiscreteSchedulerTest(SchedulerCommonTest):
10
scheduler_classes = (EulerDiscreteScheduler,)
11
num_inference_steps = 10
12
13
def get_scheduler_config(self, **kwargs):
14
config = {
15
"num_train_timesteps": 1100,
16
"beta_start": 0.0001,
17
"beta_end": 0.02,
18
"beta_schedule": "linear",
19
}
20
21
config.update(**kwargs)
22
return config
23
24
def test_timesteps(self):
25
for timesteps in [10, 50, 100, 1000]:
26
self.check_over_configs(num_train_timesteps=timesteps)
27
28
def test_betas(self):
29
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
30
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
31
32
def test_schedules(self):
33
for schedule in ["linear", "scaled_linear"]:
34
self.check_over_configs(beta_schedule=schedule)
35
36
def test_prediction_type(self):
37
for prediction_type in ["epsilon", "v_prediction"]:
38
self.check_over_configs(prediction_type=prediction_type)
39
40
def test_full_loop_no_noise(self):
41
scheduler_class = self.scheduler_classes[0]
42
scheduler_config = self.get_scheduler_config()
43
scheduler = scheduler_class(**scheduler_config)
44
45
scheduler.set_timesteps(self.num_inference_steps)
46
47
generator = torch.manual_seed(0)
48
49
model = self.dummy_model()
50
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
51
sample = sample.to(torch_device)
52
53
for i, t in enumerate(scheduler.timesteps):
54
sample = scheduler.scale_model_input(sample, t)
55
56
model_output = model(sample, t)
57
58
output = scheduler.step(model_output, t, sample, generator=generator)
59
sample = output.prev_sample
60
61
result_sum = torch.sum(torch.abs(sample))
62
result_mean = torch.mean(torch.abs(sample))
63
64
assert abs(result_sum.item() - 10.0807) < 1e-2
65
assert abs(result_mean.item() - 0.0131) < 1e-3
66
67
def test_full_loop_with_v_prediction(self):
68
scheduler_class = self.scheduler_classes[0]
69
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
70
scheduler = scheduler_class(**scheduler_config)
71
72
scheduler.set_timesteps(self.num_inference_steps)
73
74
generator = torch.manual_seed(0)
75
76
model = self.dummy_model()
77
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
78
sample = sample.to(torch_device)
79
80
for i, t in enumerate(scheduler.timesteps):
81
sample = scheduler.scale_model_input(sample, t)
82
83
model_output = model(sample, t)
84
85
output = scheduler.step(model_output, t, sample, generator=generator)
86
sample = output.prev_sample
87
88
result_sum = torch.sum(torch.abs(sample))
89
result_mean = torch.mean(torch.abs(sample))
90
91
assert abs(result_sum.item() - 0.0002) < 1e-2
92
assert abs(result_mean.item() - 2.2676e-06) < 1e-3
93
94
def test_full_loop_device(self):
95
scheduler_class = self.scheduler_classes[0]
96
scheduler_config = self.get_scheduler_config()
97
scheduler = scheduler_class(**scheduler_config)
98
99
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
100
101
generator = torch.manual_seed(0)
102
103
model = self.dummy_model()
104
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
105
sample = sample.to(torch_device)
106
107
for t in scheduler.timesteps:
108
sample = scheduler.scale_model_input(sample, t)
109
110
model_output = model(sample, t)
111
112
output = scheduler.step(model_output, t, sample, generator=generator)
113
sample = output.prev_sample
114
115
result_sum = torch.sum(torch.abs(sample))
116
result_mean = torch.mean(torch.abs(sample))
117
118
assert abs(result_sum.item() - 10.0807) < 1e-2
119
assert abs(result_mean.item() - 0.0131) < 1e-3
120
121