Path: blob/main/tests/schedulers/test_scheduler_euler_ancestral.py
1448 views
import torch12from diffusers import EulerAncestralDiscreteScheduler3from diffusers.utils import torch_device45from .test_schedulers import SchedulerCommonTest678class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest):9scheduler_classes = (EulerAncestralDiscreteScheduler,)10num_inference_steps = 101112def get_scheduler_config(self, **kwargs):13config = {14"num_train_timesteps": 1100,15"beta_start": 0.0001,16"beta_end": 0.02,17"beta_schedule": "linear",18}1920config.update(**kwargs)21return config2223def test_timesteps(self):24for timesteps in [10, 50, 100, 1000]:25self.check_over_configs(num_train_timesteps=timesteps)2627def test_betas(self):28for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):29self.check_over_configs(beta_start=beta_start, beta_end=beta_end)3031def test_schedules(self):32for schedule in ["linear", "scaled_linear"]:33self.check_over_configs(beta_schedule=schedule)3435def test_prediction_type(self):36for prediction_type in ["epsilon", "v_prediction"]:37self.check_over_configs(prediction_type=prediction_type)3839def test_full_loop_no_noise(self):40scheduler_class = self.scheduler_classes[0]41scheduler_config = self.get_scheduler_config()42scheduler = scheduler_class(**scheduler_config)4344scheduler.set_timesteps(self.num_inference_steps)4546generator = torch.manual_seed(0)4748model = self.dummy_model()49sample = self.dummy_sample_deter * scheduler.init_noise_sigma50sample = sample.to(torch_device)5152for i, t in enumerate(scheduler.timesteps):53sample = scheduler.scale_model_input(sample, t)5455model_output = model(sample, t)5657output = scheduler.step(model_output, t, sample, generator=generator)58sample = output.prev_sample5960result_sum = torch.sum(torch.abs(sample))61result_mean = torch.mean(torch.abs(sample))6263assert abs(result_sum.item() - 152.3192) < 1e-264assert abs(result_mean.item() - 0.1983) < 1e-36566def test_full_loop_with_v_prediction(self):67scheduler_class = self.scheduler_classes[0]68scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")69scheduler = scheduler_class(**scheduler_config)7071scheduler.set_timesteps(self.num_inference_steps)7273generator = torch.manual_seed(0)7475model = self.dummy_model()76sample = self.dummy_sample_deter * scheduler.init_noise_sigma77sample = sample.to(torch_device)7879for i, t in enumerate(scheduler.timesteps):80sample = scheduler.scale_model_input(sample, t)8182model_output = model(sample, t)8384output = scheduler.step(model_output, t, sample, generator=generator)85sample = output.prev_sample8687result_sum = torch.sum(torch.abs(sample))88result_mean = torch.mean(torch.abs(sample))8990assert abs(result_sum.item() - 108.4439) < 1e-291assert abs(result_mean.item() - 0.1412) < 1e-39293def test_full_loop_device(self):94scheduler_class = self.scheduler_classes[0]95scheduler_config = self.get_scheduler_config()96scheduler = scheduler_class(**scheduler_config)9798scheduler.set_timesteps(self.num_inference_steps, device=torch_device)99generator = torch.manual_seed(0)100101model = self.dummy_model()102sample = self.dummy_sample_deter * scheduler.init_noise_sigma103sample = sample.to(torch_device)104105for t in scheduler.timesteps:106sample = scheduler.scale_model_input(sample, t)107108model_output = model(sample, t)109110output = scheduler.step(model_output, t, sample, generator=generator)111sample = output.prev_sample112113result_sum = torch.sum(torch.abs(sample))114result_mean = torch.mean(torch.abs(sample))115116assert abs(result_sum.item() - 152.3192) < 1e-2117assert abs(result_mean.item() - 0.1983) < 1e-3118119120