Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/schedulers/test_scheduler_heun.py
1448 views
1
import torch
2
3
from diffusers import HeunDiscreteScheduler
4
from diffusers.utils import torch_device
5
6
from .test_schedulers import SchedulerCommonTest
7
8
9
class HeunDiscreteSchedulerTest(SchedulerCommonTest):
10
scheduler_classes = (HeunDiscreteScheduler,)
11
num_inference_steps = 10
12
13
def get_scheduler_config(self, **kwargs):
14
config = {
15
"num_train_timesteps": 1100,
16
"beta_start": 0.0001,
17
"beta_end": 0.02,
18
"beta_schedule": "linear",
19
}
20
21
config.update(**kwargs)
22
return config
23
24
def test_timesteps(self):
25
for timesteps in [10, 50, 100, 1000]:
26
self.check_over_configs(num_train_timesteps=timesteps)
27
28
def test_betas(self):
29
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
30
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
31
32
def test_schedules(self):
33
for schedule in ["linear", "scaled_linear"]:
34
self.check_over_configs(beta_schedule=schedule)
35
36
def test_prediction_type(self):
37
for prediction_type in ["epsilon", "v_prediction"]:
38
self.check_over_configs(prediction_type=prediction_type)
39
40
def test_full_loop_no_noise(self):
41
scheduler_class = self.scheduler_classes[0]
42
scheduler_config = self.get_scheduler_config()
43
scheduler = scheduler_class(**scheduler_config)
44
45
scheduler.set_timesteps(self.num_inference_steps)
46
47
model = self.dummy_model()
48
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
49
sample = sample.to(torch_device)
50
51
for i, t in enumerate(scheduler.timesteps):
52
sample = scheduler.scale_model_input(sample, t)
53
54
model_output = model(sample, t)
55
56
output = scheduler.step(model_output, t, sample)
57
sample = output.prev_sample
58
59
result_sum = torch.sum(torch.abs(sample))
60
result_mean = torch.mean(torch.abs(sample))
61
62
if torch_device in ["cpu", "mps"]:
63
assert abs(result_sum.item() - 0.1233) < 1e-2
64
assert abs(result_mean.item() - 0.0002) < 1e-3
65
else:
66
# CUDA
67
assert abs(result_sum.item() - 0.1233) < 1e-2
68
assert abs(result_mean.item() - 0.0002) < 1e-3
69
70
def test_full_loop_with_v_prediction(self):
71
scheduler_class = self.scheduler_classes[0]
72
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
73
scheduler = scheduler_class(**scheduler_config)
74
75
scheduler.set_timesteps(self.num_inference_steps)
76
77
model = self.dummy_model()
78
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
79
sample = sample.to(torch_device)
80
81
for i, t in enumerate(scheduler.timesteps):
82
sample = scheduler.scale_model_input(sample, t)
83
84
model_output = model(sample, t)
85
86
output = scheduler.step(model_output, t, sample)
87
sample = output.prev_sample
88
89
result_sum = torch.sum(torch.abs(sample))
90
result_mean = torch.mean(torch.abs(sample))
91
92
if torch_device in ["cpu", "mps"]:
93
assert abs(result_sum.item() - 4.6934e-07) < 1e-2
94
assert abs(result_mean.item() - 6.1112e-10) < 1e-3
95
else:
96
# CUDA
97
assert abs(result_sum.item() - 4.693428650170972e-07) < 1e-2
98
assert abs(result_mean.item() - 0.0002) < 1e-3
99
100
def test_full_loop_device(self):
101
scheduler_class = self.scheduler_classes[0]
102
scheduler_config = self.get_scheduler_config()
103
scheduler = scheduler_class(**scheduler_config)
104
105
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
106
107
model = self.dummy_model()
108
sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
109
110
for t in scheduler.timesteps:
111
sample = scheduler.scale_model_input(sample, t)
112
113
model_output = model(sample, t)
114
115
output = scheduler.step(model_output, t, sample)
116
sample = output.prev_sample
117
118
result_sum = torch.sum(torch.abs(sample))
119
result_mean = torch.mean(torch.abs(sample))
120
121
if str(torch_device).startswith("cpu"):
122
# The following sum varies between 148 and 156 on mps. Why?
123
assert abs(result_sum.item() - 0.1233) < 1e-2
124
assert abs(result_mean.item() - 0.0002) < 1e-3
125
elif str(torch_device).startswith("mps"):
126
# Larger tolerance on mps
127
assert abs(result_mean.item() - 0.0002) < 1e-2
128
else:
129
# CUDA
130
assert abs(result_sum.item() - 0.1233) < 1e-2
131
assert abs(result_mean.item() - 0.0002) < 1e-3
132
133