Path: blob/main/tests/schedulers/test_scheduler_heun.py
1448 views
import torch12from diffusers import HeunDiscreteScheduler3from diffusers.utils import torch_device45from .test_schedulers import SchedulerCommonTest678class HeunDiscreteSchedulerTest(SchedulerCommonTest):9scheduler_classes = (HeunDiscreteScheduler,)10num_inference_steps = 101112def get_scheduler_config(self, **kwargs):13config = {14"num_train_timesteps": 1100,15"beta_start": 0.0001,16"beta_end": 0.02,17"beta_schedule": "linear",18}1920config.update(**kwargs)21return config2223def test_timesteps(self):24for timesteps in [10, 50, 100, 1000]:25self.check_over_configs(num_train_timesteps=timesteps)2627def test_betas(self):28for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):29self.check_over_configs(beta_start=beta_start, beta_end=beta_end)3031def test_schedules(self):32for schedule in ["linear", "scaled_linear"]:33self.check_over_configs(beta_schedule=schedule)3435def test_prediction_type(self):36for prediction_type in ["epsilon", "v_prediction"]:37self.check_over_configs(prediction_type=prediction_type)3839def test_full_loop_no_noise(self):40scheduler_class = self.scheduler_classes[0]41scheduler_config = self.get_scheduler_config()42scheduler = scheduler_class(**scheduler_config)4344scheduler.set_timesteps(self.num_inference_steps)4546model = self.dummy_model()47sample = self.dummy_sample_deter * scheduler.init_noise_sigma48sample = sample.to(torch_device)4950for i, t in enumerate(scheduler.timesteps):51sample = scheduler.scale_model_input(sample, t)5253model_output = model(sample, t)5455output = scheduler.step(model_output, t, sample)56sample = output.prev_sample5758result_sum = torch.sum(torch.abs(sample))59result_mean = torch.mean(torch.abs(sample))6061if torch_device in ["cpu", "mps"]:62assert abs(result_sum.item() - 0.1233) < 1e-263assert abs(result_mean.item() - 0.0002) < 1e-364else:65# CUDA66assert abs(result_sum.item() - 0.1233) < 1e-267assert abs(result_mean.item() - 0.0002) < 1e-36869def test_full_loop_with_v_prediction(self):70scheduler_class = self.scheduler_classes[0]71scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")72scheduler = scheduler_class(**scheduler_config)7374scheduler.set_timesteps(self.num_inference_steps)7576model = self.dummy_model()77sample = self.dummy_sample_deter * scheduler.init_noise_sigma78sample = sample.to(torch_device)7980for i, t in enumerate(scheduler.timesteps):81sample = scheduler.scale_model_input(sample, t)8283model_output = model(sample, t)8485output = scheduler.step(model_output, t, sample)86sample = output.prev_sample8788result_sum = torch.sum(torch.abs(sample))89result_mean = torch.mean(torch.abs(sample))9091if torch_device in ["cpu", "mps"]:92assert abs(result_sum.item() - 4.6934e-07) < 1e-293assert abs(result_mean.item() - 6.1112e-10) < 1e-394else:95# CUDA96assert abs(result_sum.item() - 4.693428650170972e-07) < 1e-297assert abs(result_mean.item() - 0.0002) < 1e-39899def test_full_loop_device(self):100scheduler_class = self.scheduler_classes[0]101scheduler_config = self.get_scheduler_config()102scheduler = scheduler_class(**scheduler_config)103104scheduler.set_timesteps(self.num_inference_steps, device=torch_device)105106model = self.dummy_model()107sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma108109for t in scheduler.timesteps:110sample = scheduler.scale_model_input(sample, t)111112model_output = model(sample, t)113114output = scheduler.step(model_output, t, sample)115sample = output.prev_sample116117result_sum = torch.sum(torch.abs(sample))118result_mean = torch.mean(torch.abs(sample))119120if str(torch_device).startswith("cpu"):121# The following sum varies between 148 and 156 on mps. Why?122assert abs(result_sum.item() - 0.1233) < 1e-2123assert abs(result_mean.item() - 0.0002) < 1e-3124elif str(torch_device).startswith("mps"):125# Larger tolerance on mps126assert abs(result_mean.item() - 0.0002) < 1e-2127else:128# CUDA129assert abs(result_sum.item() - 0.1233) < 1e-2130assert abs(result_mean.item() - 0.0002) < 1e-3131132133