Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/schedulers/test_scheduler_kdpm2_ancestral.py
1448 views
1
import torch
2
3
from diffusers import KDPM2AncestralDiscreteScheduler
4
from diffusers.utils import torch_device
5
6
from .test_schedulers import SchedulerCommonTest
7
8
9
class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):
10
scheduler_classes = (KDPM2AncestralDiscreteScheduler,)
11
num_inference_steps = 10
12
13
def get_scheduler_config(self, **kwargs):
14
config = {
15
"num_train_timesteps": 1100,
16
"beta_start": 0.0001,
17
"beta_end": 0.02,
18
"beta_schedule": "linear",
19
}
20
21
config.update(**kwargs)
22
return config
23
24
def test_timesteps(self):
25
for timesteps in [10, 50, 100, 1000]:
26
self.check_over_configs(num_train_timesteps=timesteps)
27
28
def test_betas(self):
29
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
30
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
31
32
def test_schedules(self):
33
for schedule in ["linear", "scaled_linear"]:
34
self.check_over_configs(beta_schedule=schedule)
35
36
def test_full_loop_no_noise(self):
37
if torch_device == "mps":
38
return
39
scheduler_class = self.scheduler_classes[0]
40
scheduler_config = self.get_scheduler_config()
41
scheduler = scheduler_class(**scheduler_config)
42
43
scheduler.set_timesteps(self.num_inference_steps)
44
45
generator = torch.manual_seed(0)
46
47
model = self.dummy_model()
48
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
49
sample = sample.to(torch_device)
50
51
for i, t in enumerate(scheduler.timesteps):
52
sample = scheduler.scale_model_input(sample, t)
53
54
model_output = model(sample, t)
55
56
output = scheduler.step(model_output, t, sample, generator=generator)
57
sample = output.prev_sample
58
59
result_sum = torch.sum(torch.abs(sample))
60
result_mean = torch.mean(torch.abs(sample))
61
62
assert abs(result_sum.item() - 13849.3877) < 1e-2
63
assert abs(result_mean.item() - 18.0331) < 5e-3
64
65
def test_prediction_type(self):
66
for prediction_type in ["epsilon", "v_prediction"]:
67
self.check_over_configs(prediction_type=prediction_type)
68
69
def test_full_loop_with_v_prediction(self):
70
if torch_device == "mps":
71
return
72
scheduler_class = self.scheduler_classes[0]
73
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
74
scheduler = scheduler_class(**scheduler_config)
75
76
scheduler.set_timesteps(self.num_inference_steps)
77
78
model = self.dummy_model()
79
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
80
sample = sample.to(torch_device)
81
82
generator = torch.manual_seed(0)
83
84
for i, t in enumerate(scheduler.timesteps):
85
sample = scheduler.scale_model_input(sample, t)
86
87
model_output = model(sample, t)
88
89
output = scheduler.step(model_output, t, sample, generator=generator)
90
sample = output.prev_sample
91
92
result_sum = torch.sum(torch.abs(sample))
93
result_mean = torch.mean(torch.abs(sample))
94
95
assert abs(result_sum.item() - 328.9970) < 1e-2
96
assert abs(result_mean.item() - 0.4284) < 1e-3
97
98
def test_full_loop_device(self):
99
if torch_device == "mps":
100
return
101
scheduler_class = self.scheduler_classes[0]
102
scheduler_config = self.get_scheduler_config()
103
scheduler = scheduler_class(**scheduler_config)
104
105
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
106
generator = torch.manual_seed(0)
107
108
model = self.dummy_model()
109
sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
110
111
for t in scheduler.timesteps:
112
sample = scheduler.scale_model_input(sample, t)
113
114
model_output = model(sample, t)
115
116
output = scheduler.step(model_output, t, sample, generator=generator)
117
sample = output.prev_sample
118
119
result_sum = torch.sum(torch.abs(sample))
120
result_mean = torch.mean(torch.abs(sample))
121
122
assert abs(result_sum.item() - 13849.3818) < 1e-1
123
assert abs(result_mean.item() - 18.0331) < 1e-3
124
125