Path: blob/main/tests/schedulers/test_scheduler_kdpm2_ancestral.py
1448 views
import torch12from diffusers import KDPM2AncestralDiscreteScheduler3from diffusers.utils import torch_device45from .test_schedulers import SchedulerCommonTest678class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest):9scheduler_classes = (KDPM2AncestralDiscreteScheduler,)10num_inference_steps = 101112def get_scheduler_config(self, **kwargs):13config = {14"num_train_timesteps": 1100,15"beta_start": 0.0001,16"beta_end": 0.02,17"beta_schedule": "linear",18}1920config.update(**kwargs)21return config2223def test_timesteps(self):24for timesteps in [10, 50, 100, 1000]:25self.check_over_configs(num_train_timesteps=timesteps)2627def test_betas(self):28for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):29self.check_over_configs(beta_start=beta_start, beta_end=beta_end)3031def test_schedules(self):32for schedule in ["linear", "scaled_linear"]:33self.check_over_configs(beta_schedule=schedule)3435def test_full_loop_no_noise(self):36if torch_device == "mps":37return38scheduler_class = self.scheduler_classes[0]39scheduler_config = self.get_scheduler_config()40scheduler = scheduler_class(**scheduler_config)4142scheduler.set_timesteps(self.num_inference_steps)4344generator = torch.manual_seed(0)4546model = self.dummy_model()47sample = self.dummy_sample_deter * scheduler.init_noise_sigma48sample = sample.to(torch_device)4950for i, t in enumerate(scheduler.timesteps):51sample = scheduler.scale_model_input(sample, t)5253model_output = model(sample, t)5455output = scheduler.step(model_output, t, sample, generator=generator)56sample = output.prev_sample5758result_sum = torch.sum(torch.abs(sample))59result_mean = torch.mean(torch.abs(sample))6061assert abs(result_sum.item() - 13849.3877) < 1e-262assert abs(result_mean.item() - 18.0331) < 5e-36364def test_prediction_type(self):65for prediction_type in ["epsilon", "v_prediction"]:66self.check_over_configs(prediction_type=prediction_type)6768def test_full_loop_with_v_prediction(self):69if torch_device == "mps":70return71scheduler_class = self.scheduler_classes[0]72scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")73scheduler = scheduler_class(**scheduler_config)7475scheduler.set_timesteps(self.num_inference_steps)7677model = self.dummy_model()78sample = self.dummy_sample_deter * scheduler.init_noise_sigma79sample = sample.to(torch_device)8081generator = torch.manual_seed(0)8283for i, t in enumerate(scheduler.timesteps):84sample = scheduler.scale_model_input(sample, t)8586model_output = model(sample, t)8788output = scheduler.step(model_output, t, sample, generator=generator)89sample = output.prev_sample9091result_sum = torch.sum(torch.abs(sample))92result_mean = torch.mean(torch.abs(sample))9394assert abs(result_sum.item() - 328.9970) < 1e-295assert abs(result_mean.item() - 0.4284) < 1e-39697def test_full_loop_device(self):98if torch_device == "mps":99return100scheduler_class = self.scheduler_classes[0]101scheduler_config = self.get_scheduler_config()102scheduler = scheduler_class(**scheduler_config)103104scheduler.set_timesteps(self.num_inference_steps, device=torch_device)105generator = torch.manual_seed(0)106107model = self.dummy_model()108sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma109110for t in scheduler.timesteps:111sample = scheduler.scale_model_input(sample, t)112113model_output = model(sample, t)114115output = scheduler.step(model_output, t, sample, generator=generator)116sample = output.prev_sample117118result_sum = torch.sum(torch.abs(sample))119result_mean = torch.mean(torch.abs(sample))120121assert abs(result_sum.item() - 13849.3818) < 1e-1122assert abs(result_mean.item() - 18.0331) < 1e-3123124125