Path: blob/main/tests/schedulers/test_scheduler_kdpm2_discrete.py
1448 views
import torch12from diffusers import KDPM2DiscreteScheduler3from diffusers.utils import torch_device45from .test_schedulers import SchedulerCommonTest678class KDPM2DiscreteSchedulerTest(SchedulerCommonTest):9scheduler_classes = (KDPM2DiscreteScheduler,)10num_inference_steps = 101112def get_scheduler_config(self, **kwargs):13config = {14"num_train_timesteps": 1100,15"beta_start": 0.0001,16"beta_end": 0.02,17"beta_schedule": "linear",18}1920config.update(**kwargs)21return config2223def test_timesteps(self):24for timesteps in [10, 50, 100, 1000]:25self.check_over_configs(num_train_timesteps=timesteps)2627def test_betas(self):28for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):29self.check_over_configs(beta_start=beta_start, beta_end=beta_end)3031def test_schedules(self):32for schedule in ["linear", "scaled_linear"]:33self.check_over_configs(beta_schedule=schedule)3435def test_prediction_type(self):36for prediction_type in ["epsilon", "v_prediction"]:37self.check_over_configs(prediction_type=prediction_type)3839def test_full_loop_with_v_prediction(self):40scheduler_class = self.scheduler_classes[0]41scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")42scheduler = scheduler_class(**scheduler_config)4344scheduler.set_timesteps(self.num_inference_steps)4546model = self.dummy_model()47sample = self.dummy_sample_deter * scheduler.init_noise_sigma48sample = sample.to(torch_device)4950for i, t in enumerate(scheduler.timesteps):51sample = scheduler.scale_model_input(sample, t)5253model_output = model(sample, t)5455output = scheduler.step(model_output, t, sample)56sample = output.prev_sample5758result_sum = torch.sum(torch.abs(sample))59result_mean = torch.mean(torch.abs(sample))6061if torch_device in ["cpu", "mps"]:62assert abs(result_sum.item() - 4.6934e-07) < 1e-263assert abs(result_mean.item() - 6.1112e-10) < 1e-364else:65# CUDA66assert abs(result_sum.item() - 4.693428650170972e-07) < 1e-267assert abs(result_mean.item() - 0.0002) < 1e-36869def test_full_loop_no_noise(self):70if torch_device == "mps":71return72scheduler_class = self.scheduler_classes[0]73scheduler_config = self.get_scheduler_config()74scheduler = scheduler_class(**scheduler_config)7576scheduler.set_timesteps(self.num_inference_steps)7778model = self.dummy_model()79sample = self.dummy_sample_deter * scheduler.init_noise_sigma80sample = sample.to(torch_device)8182for i, t in enumerate(scheduler.timesteps):83sample = scheduler.scale_model_input(sample, t)8485model_output = model(sample, t)8687output = scheduler.step(model_output, t, sample)88sample = output.prev_sample8990result_sum = torch.sum(torch.abs(sample))91result_mean = torch.mean(torch.abs(sample))9293if torch_device in ["cpu", "mps"]:94assert abs(result_sum.item() - 20.4125) < 1e-295assert abs(result_mean.item() - 0.0266) < 1e-396else:97# CUDA98assert abs(result_sum.item() - 20.4125) < 1e-299assert abs(result_mean.item() - 0.0266) < 1e-3100101def test_full_loop_device(self):102if torch_device == "mps":103return104scheduler_class = self.scheduler_classes[0]105scheduler_config = self.get_scheduler_config()106scheduler = scheduler_class(**scheduler_config)107108scheduler.set_timesteps(self.num_inference_steps, device=torch_device)109110model = self.dummy_model()111sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma112113for t in scheduler.timesteps:114sample = scheduler.scale_model_input(sample, t)115116model_output = model(sample, t)117118output = scheduler.step(model_output, t, sample)119sample = output.prev_sample120121result_sum = torch.sum(torch.abs(sample))122result_mean = torch.mean(torch.abs(sample))123124if str(torch_device).startswith("cpu"):125# The following sum varies between 148 and 156 on mps. Why?126assert abs(result_sum.item() - 20.4125) < 1e-2127assert abs(result_mean.item() - 0.0266) < 1e-3128else:129# CUDA130assert abs(result_sum.item() - 20.4125) < 1e-2131assert abs(result_mean.item() - 0.0266) < 1e-3132133134