Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/schedulers/test_scheduler_lms.py
1448 views
1
import torch
2
3
from diffusers import LMSDiscreteScheduler
4
from diffusers.utils import torch_device
5
6
from .test_schedulers import SchedulerCommonTest
7
8
9
class LMSDiscreteSchedulerTest(SchedulerCommonTest):
10
scheduler_classes = (LMSDiscreteScheduler,)
11
num_inference_steps = 10
12
13
def get_scheduler_config(self, **kwargs):
14
config = {
15
"num_train_timesteps": 1100,
16
"beta_start": 0.0001,
17
"beta_end": 0.02,
18
"beta_schedule": "linear",
19
}
20
21
config.update(**kwargs)
22
return config
23
24
def test_timesteps(self):
25
for timesteps in [10, 50, 100, 1000]:
26
self.check_over_configs(num_train_timesteps=timesteps)
27
28
def test_betas(self):
29
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
30
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
31
32
def test_schedules(self):
33
for schedule in ["linear", "scaled_linear"]:
34
self.check_over_configs(beta_schedule=schedule)
35
36
def test_prediction_type(self):
37
for prediction_type in ["epsilon", "v_prediction"]:
38
self.check_over_configs(prediction_type=prediction_type)
39
40
def test_time_indices(self):
41
for t in [0, 500, 800]:
42
self.check_over_forward(time_step=t)
43
44
def test_full_loop_no_noise(self):
45
scheduler_class = self.scheduler_classes[0]
46
scheduler_config = self.get_scheduler_config()
47
scheduler = scheduler_class(**scheduler_config)
48
49
scheduler.set_timesteps(self.num_inference_steps)
50
51
model = self.dummy_model()
52
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
53
54
for i, t in enumerate(scheduler.timesteps):
55
sample = scheduler.scale_model_input(sample, t)
56
57
model_output = model(sample, t)
58
59
output = scheduler.step(model_output, t, sample)
60
sample = output.prev_sample
61
62
result_sum = torch.sum(torch.abs(sample))
63
result_mean = torch.mean(torch.abs(sample))
64
65
assert abs(result_sum.item() - 1006.388) < 1e-2
66
assert abs(result_mean.item() - 1.31) < 1e-3
67
68
def test_full_loop_with_v_prediction(self):
69
scheduler_class = self.scheduler_classes[0]
70
scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
71
scheduler = scheduler_class(**scheduler_config)
72
73
scheduler.set_timesteps(self.num_inference_steps)
74
75
model = self.dummy_model()
76
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
77
78
for i, t in enumerate(scheduler.timesteps):
79
sample = scheduler.scale_model_input(sample, t)
80
81
model_output = model(sample, t)
82
83
output = scheduler.step(model_output, t, sample)
84
sample = output.prev_sample
85
86
result_sum = torch.sum(torch.abs(sample))
87
result_mean = torch.mean(torch.abs(sample))
88
89
assert abs(result_sum.item() - 0.0017) < 1e-2
90
assert abs(result_mean.item() - 2.2676e-06) < 1e-3
91
92
def test_full_loop_device(self):
93
scheduler_class = self.scheduler_classes[0]
94
scheduler_config = self.get_scheduler_config()
95
scheduler = scheduler_class(**scheduler_config)
96
97
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
98
99
model = self.dummy_model()
100
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
101
sample = sample.to(torch_device)
102
103
for i, t in enumerate(scheduler.timesteps):
104
sample = scheduler.scale_model_input(sample, t)
105
106
model_output = model(sample, t)
107
108
output = scheduler.step(model_output, t, sample)
109
sample = output.prev_sample
110
111
result_sum = torch.sum(torch.abs(sample))
112
result_mean = torch.mean(torch.abs(sample))
113
114
assert abs(result_sum.item() - 1006.388) < 1e-2
115
assert abs(result_mean.item() - 1.31) < 1e-3
116
117