Path: blob/main/tests/schedulers/test_scheduler_lms.py
1448 views
import torch12from diffusers import LMSDiscreteScheduler3from diffusers.utils import torch_device45from .test_schedulers import SchedulerCommonTest678class LMSDiscreteSchedulerTest(SchedulerCommonTest):9scheduler_classes = (LMSDiscreteScheduler,)10num_inference_steps = 101112def get_scheduler_config(self, **kwargs):13config = {14"num_train_timesteps": 1100,15"beta_start": 0.0001,16"beta_end": 0.02,17"beta_schedule": "linear",18}1920config.update(**kwargs)21return config2223def test_timesteps(self):24for timesteps in [10, 50, 100, 1000]:25self.check_over_configs(num_train_timesteps=timesteps)2627def test_betas(self):28for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):29self.check_over_configs(beta_start=beta_start, beta_end=beta_end)3031def test_schedules(self):32for schedule in ["linear", "scaled_linear"]:33self.check_over_configs(beta_schedule=schedule)3435def test_prediction_type(self):36for prediction_type in ["epsilon", "v_prediction"]:37self.check_over_configs(prediction_type=prediction_type)3839def test_time_indices(self):40for t in [0, 500, 800]:41self.check_over_forward(time_step=t)4243def test_full_loop_no_noise(self):44scheduler_class = self.scheduler_classes[0]45scheduler_config = self.get_scheduler_config()46scheduler = scheduler_class(**scheduler_config)4748scheduler.set_timesteps(self.num_inference_steps)4950model = self.dummy_model()51sample = self.dummy_sample_deter * scheduler.init_noise_sigma5253for i, t in enumerate(scheduler.timesteps):54sample = scheduler.scale_model_input(sample, t)5556model_output = model(sample, t)5758output = scheduler.step(model_output, t, sample)59sample = output.prev_sample6061result_sum = torch.sum(torch.abs(sample))62result_mean = torch.mean(torch.abs(sample))6364assert abs(result_sum.item() - 1006.388) < 1e-265assert abs(result_mean.item() - 1.31) < 1e-36667def test_full_loop_with_v_prediction(self):68scheduler_class = self.scheduler_classes[0]69scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")70scheduler = scheduler_class(**scheduler_config)7172scheduler.set_timesteps(self.num_inference_steps)7374model = self.dummy_model()75sample = self.dummy_sample_deter * scheduler.init_noise_sigma7677for i, t in enumerate(scheduler.timesteps):78sample = scheduler.scale_model_input(sample, t)7980model_output = model(sample, t)8182output = scheduler.step(model_output, t, sample)83sample = output.prev_sample8485result_sum = torch.sum(torch.abs(sample))86result_mean = torch.mean(torch.abs(sample))8788assert abs(result_sum.item() - 0.0017) < 1e-289assert abs(result_mean.item() - 2.2676e-06) < 1e-39091def test_full_loop_device(self):92scheduler_class = self.scheduler_classes[0]93scheduler_config = self.get_scheduler_config()94scheduler = scheduler_class(**scheduler_config)9596scheduler.set_timesteps(self.num_inference_steps, device=torch_device)9798model = self.dummy_model()99sample = self.dummy_sample_deter * scheduler.init_noise_sigma100sample = sample.to(torch_device)101102for i, t in enumerate(scheduler.timesteps):103sample = scheduler.scale_model_input(sample, t)104105model_output = model(sample, t)106107output = scheduler.step(model_output, t, sample)108sample = output.prev_sample109110result_sum = torch.sum(torch.abs(sample))111result_mean = torch.mean(torch.abs(sample))112113assert abs(result_sum.item() - 1006.388) < 1e-2114assert abs(result_mean.item() - 1.31) < 1e-3115116117