Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/schedulers/test_scheduler_unclip.py
1448 views
1
import torch
2
3
from diffusers import UnCLIPScheduler
4
5
from .test_schedulers import SchedulerCommonTest
6
7
8
# UnCLIPScheduler is a modified DDPMScheduler with a subset of the configuration.
9
class UnCLIPSchedulerTest(SchedulerCommonTest):
10
scheduler_classes = (UnCLIPScheduler,)
11
12
def get_scheduler_config(self, **kwargs):
13
config = {
14
"num_train_timesteps": 1000,
15
"variance_type": "fixed_small_log",
16
"clip_sample": True,
17
"clip_sample_range": 1.0,
18
"prediction_type": "epsilon",
19
}
20
21
config.update(**kwargs)
22
return config
23
24
def test_timesteps(self):
25
for timesteps in [1, 5, 100, 1000]:
26
self.check_over_configs(num_train_timesteps=timesteps)
27
28
def test_variance_type(self):
29
for variance in ["fixed_small_log", "learned_range"]:
30
self.check_over_configs(variance_type=variance)
31
32
def test_clip_sample(self):
33
for clip_sample in [True, False]:
34
self.check_over_configs(clip_sample=clip_sample)
35
36
def test_clip_sample_range(self):
37
for clip_sample_range in [1, 5, 10, 20]:
38
self.check_over_configs(clip_sample_range=clip_sample_range)
39
40
def test_prediction_type(self):
41
for prediction_type in ["epsilon", "sample"]:
42
self.check_over_configs(prediction_type=prediction_type)
43
44
def test_time_indices(self):
45
for time_step in [0, 500, 999]:
46
for prev_timestep in [None, 5, 100, 250, 500, 750]:
47
if prev_timestep is not None and prev_timestep >= time_step:
48
continue
49
50
self.check_over_forward(time_step=time_step, prev_timestep=prev_timestep)
51
52
def test_variance_fixed_small_log(self):
53
scheduler_class = self.scheduler_classes[0]
54
scheduler_config = self.get_scheduler_config(variance_type="fixed_small_log")
55
scheduler = scheduler_class(**scheduler_config)
56
57
assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5
58
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0549625)) < 1e-5
59
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9994987)) < 1e-5
60
61
def test_variance_learned_range(self):
62
scheduler_class = self.scheduler_classes[0]
63
scheduler_config = self.get_scheduler_config(variance_type="learned_range")
64
scheduler = scheduler_class(**scheduler_config)
65
66
predicted_variance = 0.5
67
68
assert scheduler._get_variance(1, predicted_variance=predicted_variance) - -10.1712790 < 1e-5
69
assert scheduler._get_variance(487, predicted_variance=predicted_variance) - -5.7998052 < 1e-5
70
assert scheduler._get_variance(999, predicted_variance=predicted_variance) - -0.0010011 < 1e-5
71
72
def test_full_loop(self):
73
scheduler_class = self.scheduler_classes[0]
74
scheduler_config = self.get_scheduler_config()
75
scheduler = scheduler_class(**scheduler_config)
76
77
timesteps = scheduler.timesteps
78
79
model = self.dummy_model()
80
sample = self.dummy_sample_deter
81
generator = torch.manual_seed(0)
82
83
for i, t in enumerate(timesteps):
84
# 1. predict noise residual
85
residual = model(sample, t)
86
87
# 2. predict previous mean of sample x_t-1
88
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
89
90
sample = pred_prev_sample
91
92
result_sum = torch.sum(torch.abs(sample))
93
result_mean = torch.mean(torch.abs(sample))
94
95
assert abs(result_sum.item() - 252.2682495) < 1e-2
96
assert abs(result_mean.item() - 0.3284743) < 1e-3
97
98
def test_full_loop_skip_timesteps(self):
99
scheduler_class = self.scheduler_classes[0]
100
scheduler_config = self.get_scheduler_config()
101
scheduler = scheduler_class(**scheduler_config)
102
103
scheduler.set_timesteps(25)
104
105
timesteps = scheduler.timesteps
106
107
model = self.dummy_model()
108
sample = self.dummy_sample_deter
109
generator = torch.manual_seed(0)
110
111
for i, t in enumerate(timesteps):
112
# 1. predict noise residual
113
residual = model(sample, t)
114
115
if i + 1 == timesteps.shape[0]:
116
prev_timestep = None
117
else:
118
prev_timestep = timesteps[i + 1]
119
120
# 2. predict previous mean of sample x_t-1
121
pred_prev_sample = scheduler.step(
122
residual, t, sample, prev_timestep=prev_timestep, generator=generator
123
).prev_sample
124
125
sample = pred_prev_sample
126
127
result_sum = torch.sum(torch.abs(sample))
128
result_mean = torch.mean(torch.abs(sample))
129
130
assert abs(result_sum.item() - 258.2044983) < 1e-2
131
assert abs(result_mean.item() - 0.3362038) < 1e-3
132
133
def test_trained_betas(self):
134
pass
135
136
def test_add_noise_device(self):
137
pass
138
139