Path: blob/main/tests/schedulers/test_scheduler_unipc.py
1448 views
import tempfile12import torch34from diffusers import (5DEISMultistepScheduler,6DPMSolverMultistepScheduler,7DPMSolverSinglestepScheduler,8UniPCMultistepScheduler,9)1011from .test_schedulers import SchedulerCommonTest121314class UniPCMultistepSchedulerTest(SchedulerCommonTest):15scheduler_classes = (UniPCMultistepScheduler,)16forward_default_kwargs = (("num_inference_steps", 25),)1718def get_scheduler_config(self, **kwargs):19config = {20"num_train_timesteps": 1000,21"beta_start": 0.0001,22"beta_end": 0.02,23"beta_schedule": "linear",24"solver_order": 2,25"solver_type": "bh1",26}2728config.update(**kwargs)29return config3031def check_over_configs(self, time_step=0, **config):32kwargs = dict(self.forward_default_kwargs)33num_inference_steps = kwargs.pop("num_inference_steps", None)34sample = self.dummy_sample35residual = 0.1 * sample36dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]3738for scheduler_class in self.scheduler_classes:39scheduler_config = self.get_scheduler_config(**config)40scheduler = scheduler_class(**scheduler_config)41scheduler.set_timesteps(num_inference_steps)42# copy over dummy past residuals43scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]4445with tempfile.TemporaryDirectory() as tmpdirname:46scheduler.save_config(tmpdirname)47new_scheduler = scheduler_class.from_pretrained(tmpdirname)48new_scheduler.set_timesteps(num_inference_steps)49# copy over dummy past residuals50new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]5152output, new_output = sample, sample53for t in range(time_step, time_step + scheduler.config.solver_order + 1):54output = scheduler.step(residual, t, output, **kwargs).prev_sample55new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample5657assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"5859def check_over_forward(self, time_step=0, **forward_kwargs):60kwargs = dict(self.forward_default_kwargs)61num_inference_steps = kwargs.pop("num_inference_steps", None)62sample = self.dummy_sample63residual = 0.1 * sample64dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]6566for scheduler_class in self.scheduler_classes:67scheduler_config = self.get_scheduler_config()68scheduler = scheduler_class(**scheduler_config)69scheduler.set_timesteps(num_inference_steps)7071# copy over dummy past residuals (must be after setting timesteps)72scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]7374with tempfile.TemporaryDirectory() as tmpdirname:75scheduler.save_config(tmpdirname)76new_scheduler = scheduler_class.from_pretrained(tmpdirname)77# copy over dummy past residuals78new_scheduler.set_timesteps(num_inference_steps)7980# copy over dummy past residual (must be after setting timesteps)81new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]8283output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample84new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample8586assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"8788def full_loop(self, scheduler=None, **config):89if scheduler is None:90scheduler_class = self.scheduler_classes[0]91scheduler_config = self.get_scheduler_config(**config)92scheduler = scheduler_class(**scheduler_config)9394scheduler_class = self.scheduler_classes[0]95scheduler_config = self.get_scheduler_config(**config)96scheduler = scheduler_class(**scheduler_config)9798num_inference_steps = 1099model = self.dummy_model()100sample = self.dummy_sample_deter101scheduler.set_timesteps(num_inference_steps)102103for i, t in enumerate(scheduler.timesteps):104residual = model(sample, t)105sample = scheduler.step(residual, t, sample).prev_sample106107return sample108109def test_step_shape(self):110kwargs = dict(self.forward_default_kwargs)111112num_inference_steps = kwargs.pop("num_inference_steps", None)113114for scheduler_class in self.scheduler_classes:115scheduler_config = self.get_scheduler_config()116scheduler = scheduler_class(**scheduler_config)117118sample = self.dummy_sample119residual = 0.1 * sample120121if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):122scheduler.set_timesteps(num_inference_steps)123elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):124kwargs["num_inference_steps"] = num_inference_steps125126# copy over dummy past residuals (must be done after set_timesteps)127dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]128scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]129130time_step_0 = scheduler.timesteps[5]131time_step_1 = scheduler.timesteps[6]132133output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample134output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample135136self.assertEqual(output_0.shape, sample.shape)137self.assertEqual(output_0.shape, output_1.shape)138139def test_switch(self):140# make sure that iterating over schedulers with same config names gives same results141# for defaults142scheduler = UniPCMultistepScheduler(**self.get_scheduler_config())143sample = self.full_loop(scheduler=scheduler)144result_mean = torch.mean(torch.abs(sample))145146assert abs(result_mean.item() - 0.2521) < 1e-3147148scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config)149scheduler = DEISMultistepScheduler.from_config(scheduler.config)150scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)151scheduler = UniPCMultistepScheduler.from_config(scheduler.config)152153sample = self.full_loop(scheduler=scheduler)154result_mean = torch.mean(torch.abs(sample))155156assert abs(result_mean.item() - 0.2521) < 1e-3157158def test_timesteps(self):159for timesteps in [25, 50, 100, 999, 1000]:160self.check_over_configs(num_train_timesteps=timesteps)161162def test_thresholding(self):163self.check_over_configs(thresholding=False)164for order in [1, 2, 3]:165for solver_type in ["bh1", "bh2"]:166for threshold in [0.5, 1.0, 2.0]:167for prediction_type in ["epsilon", "sample"]:168self.check_over_configs(169thresholding=True,170prediction_type=prediction_type,171sample_max_value=threshold,172solver_order=order,173solver_type=solver_type,174)175176def test_prediction_type(self):177for prediction_type in ["epsilon", "v_prediction"]:178self.check_over_configs(prediction_type=prediction_type)179180def test_solver_order_and_type(self):181for solver_type in ["bh1", "bh2"]:182for order in [1, 2, 3]:183for prediction_type in ["epsilon", "sample"]:184self.check_over_configs(185solver_order=order,186solver_type=solver_type,187prediction_type=prediction_type,188)189sample = self.full_loop(190solver_order=order,191solver_type=solver_type,192prediction_type=prediction_type,193)194assert not torch.isnan(sample).any(), "Samples have nan numbers"195196def test_lower_order_final(self):197self.check_over_configs(lower_order_final=True)198self.check_over_configs(lower_order_final=False)199200def test_inference_steps(self):201for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:202self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)203204def test_full_loop_no_noise(self):205sample = self.full_loop()206result_mean = torch.mean(torch.abs(sample))207208assert abs(result_mean.item() - 0.2521) < 1e-3209210def test_full_loop_with_v_prediction(self):211sample = self.full_loop(prediction_type="v_prediction")212result_mean = torch.mean(torch.abs(sample))213214assert abs(result_mean.item() - 0.1096) < 1e-3215216def test_fp16_support(self):217scheduler_class = self.scheduler_classes[0]218scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)219scheduler = scheduler_class(**scheduler_config)220221num_inference_steps = 10222model = self.dummy_model()223sample = self.dummy_sample_deter.half()224scheduler.set_timesteps(num_inference_steps)225226for i, t in enumerate(scheduler.timesteps):227residual = model(sample, t)228sample = scheduler.step(residual, t, sample).prev_sample229230assert sample.dtype == torch.float16231232233