Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/test_training.py
1440 views
1
# coding=utf-8
2
# Copyright 2023 HuggingFace Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
# http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
16
import unittest
17
18
import torch
19
20
from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel
21
from diffusers.training_utils import set_seed
22
from diffusers.utils.testing_utils import slow
23
24
25
torch.backends.cuda.matmul.allow_tf32 = False
26
27
28
class TrainingTests(unittest.TestCase):
29
def get_model_optimizer(self, resolution=32):
30
set_seed(0)
31
model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3)
32
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
33
return model, optimizer
34
35
@slow
36
def test_training_step_equality(self):
37
device = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
38
ddpm_scheduler = DDPMScheduler(
39
num_train_timesteps=1000,
40
beta_start=0.0001,
41
beta_end=0.02,
42
beta_schedule="linear",
43
clip_sample=True,
44
)
45
ddim_scheduler = DDIMScheduler(
46
num_train_timesteps=1000,
47
beta_start=0.0001,
48
beta_end=0.02,
49
beta_schedule="linear",
50
clip_sample=True,
51
)
52
53
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
54
55
# shared batches for DDPM and DDIM
56
set_seed(0)
57
clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(device) for _ in range(4)]
58
noise = [torch.randn((4, 3, 32, 32)).to(device) for _ in range(4)]
59
timesteps = [torch.randint(0, 1000, (4,)).long().to(device) for _ in range(4)]
60
61
# train with a DDPM scheduler
62
model, optimizer = self.get_model_optimizer(resolution=32)
63
model.train().to(device)
64
for i in range(4):
65
optimizer.zero_grad()
66
ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
67
ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i]).sample
68
loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i])
69
loss.backward()
70
optimizer.step()
71
del model, optimizer
72
73
# recreate the model and optimizer, and retry with DDIM
74
model, optimizer = self.get_model_optimizer(resolution=32)
75
model.train().to(device)
76
for i in range(4):
77
optimizer.zero_grad()
78
ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
79
ddim_noise_pred = model(ddim_noisy_images, timesteps[i]).sample
80
loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i])
81
loss.backward()
82
optimizer.step()
83
del model, optimizer
84
85
self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5))
86
self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5))
87
88