Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/test_unet_blocks_common.py
1440 views
1
# coding=utf-8
2
# Copyright 2023 HuggingFace Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
# http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
import unittest
16
from typing import Tuple
17
18
import torch
19
20
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
21
from diffusers.utils.testing_utils import require_torch
22
23
24
@require_torch
25
class UNetBlockTesterMixin:
26
@property
27
def dummy_input(self):
28
return self.get_dummy_input()
29
30
@property
31
def output_shape(self):
32
if self.block_type == "down":
33
return (4, 32, 16, 16)
34
elif self.block_type == "mid":
35
return (4, 32, 32, 32)
36
elif self.block_type == "up":
37
return (4, 32, 64, 64)
38
39
raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.")
40
41
def get_dummy_input(
42
self,
43
include_temb=True,
44
include_res_hidden_states_tuple=False,
45
include_encoder_hidden_states=False,
46
include_skip_sample=False,
47
):
48
batch_size = 4
49
num_channels = 32
50
sizes = (32, 32)
51
52
generator = torch.manual_seed(0)
53
device = torch.device(torch_device)
54
shape = (batch_size, num_channels) + sizes
55
hidden_states = randn_tensor(shape, generator=generator, device=device)
56
dummy_input = {"hidden_states": hidden_states}
57
58
if include_temb:
59
temb_channels = 128
60
dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device)
61
62
if include_res_hidden_states_tuple:
63
generator_1 = torch.manual_seed(1)
64
dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),)
65
66
if include_encoder_hidden_states:
67
dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device)
68
69
if include_skip_sample:
70
dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device)
71
72
return dummy_input
73
74
def prepare_init_args_and_inputs_for_common(self):
75
init_dict = {
76
"in_channels": 32,
77
"out_channels": 32,
78
"temb_channels": 128,
79
}
80
if self.block_type == "up":
81
init_dict["prev_output_channel"] = 32
82
83
if self.block_type == "mid":
84
init_dict.pop("out_channels")
85
86
inputs_dict = self.dummy_input
87
return init_dict, inputs_dict
88
89
def test_output(self, expected_slice):
90
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
91
unet_block = self.block_class(**init_dict)
92
unet_block.to(torch_device)
93
unet_block.eval()
94
95
with torch.no_grad():
96
output = unet_block(**inputs_dict)
97
98
if isinstance(output, Tuple):
99
output = output[0]
100
101
self.assertEqual(output.shape, self.output_shape)
102
103
output_slice = output[0, -1, -3:, -3:]
104
expected_slice = torch.tensor(expected_slice).to(torch_device)
105
assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3)
106
107
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
108
def test_training(self):
109
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
110
model = self.block_class(**init_dict)
111
model.to(torch_device)
112
model.train()
113
output = model(**inputs_dict)
114
115
if isinstance(output, Tuple):
116
output = output[0]
117
118
device = torch.device(torch_device)
119
noise = randn_tensor(output.shape, device=device)
120
loss = torch.nn.functional.mse_loss(output, noise)
121
loss.backward()
122
123