#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <iostream>
#include <vector>
#include <sstream>
#include <cstring>
#include <limits>
#include <chrono>
#include <iomanip>
#include <memory>
#include <string>
#include <stdexcept>
#include <cstdio>
#include <cstdarg>
#include <cmath>
#if __cplusplus < 201703L
#include <memory>
#endif
#include "onnxruntime_cxx_api.h"
#include "wav.h"
class timestamp_t {
public:
int start;
int end;
timestamp_t(int start = -1, int end = -1)
: start(start), end(end) { }
timestamp_t& operator=(const timestamp_t& a) {
start = a.start;
end = a.end;
return *this;
}
bool operator==(const timestamp_t& a) const {
return (start == a.start && end == a.end);
}
std::string c_str() const {
return format("{start:%08d, end:%08d}", start, end);
}
private:
std::string format(const char* fmt, ...) const {
char buf[256];
va_list args;
va_start(args, fmt);
const auto r = std::vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
if (r < 0)
return {};
const size_t len = r;
if (len < sizeof(buf))
return std::string(buf, len);
#if __cplusplus >= 201703L
std::string s(len, '\0');
va_start(args, fmt);
std::vsnprintf(s.data(), len + 1, fmt, args);
va_end(args);
return s;
#else
auto vbuf = std::unique_ptr<char[]>(new char[len + 1]);
va_start(args, fmt);
std::vsnprintf(vbuf.get(), len + 1, fmt, args);
va_end(args);
return std::string(vbuf.get(), len);
#endif
}
};
class VadIterator {
private:
Ort::Env env;
Ort::SessionOptions session_options;
std::shared_ptr<Ort::Session> session = nullptr;
Ort::AllocatorWithDefaultOptions allocator;
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
const int context_samples = 64;
std::vector<float> _context;
int window_size_samples;
int effective_window_size;
int sr_per_ms;
std::vector<Ort::Value> ort_inputs;
std::vector<const char*> input_node_names = { "input", "state", "sr" };
std::vector<float> input;
unsigned int size_state = 2 * 1 * 128;
std::vector<float> _state;
std::vector<int64_t> sr;
int64_t input_node_dims[2] = {};
const int64_t state_node_dims[3] = { 2, 1, 128 };
const int64_t sr_node_dims[1] = { 1 };
std::vector<Ort::Value> ort_outputs;
std::vector<const char*> output_node_names = { "output", "stateN" };
int sample_rate;
float threshold;
int min_silence_samples;
int min_silence_samples_at_max_speech;
int min_speech_samples;
float max_speech_samples;
int speech_pad_samples;
int audio_length_samples;
bool triggered = false;
unsigned int temp_end = 0;
unsigned int current_sample = 0;
int prev_end;
int next_start = 0;
std::vector<timestamp_t> speeches;
timestamp_t current_speech;
void init_onnx_model(const std::wstring& model_path) {
init_engine_threads(1, 1);
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
}
void init_engine_threads(int inter_threads, int intra_threads) {
session_options.SetIntraOpNumThreads(intra_threads);
session_options.SetInterOpNumThreads(inter_threads);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
}
void reset_states() {
std::memset(_state.data(), 0, _state.size() * sizeof(float));
triggered = false;
temp_end = 0;
current_sample = 0;
prev_end = next_start = 0;
speeches.clear();
current_speech = timestamp_t();
std::fill(_context.begin(), _context.end(), 0.0f);
}
void predict(const std::vector<float>& data_chunk) {
std::vector<float> new_data(effective_window_size, 0.0f);
std::copy(_context.begin(), _context.end(), new_data.begin());
std::copy(data_chunk.begin(), data_chunk.end(), new_data.begin() + context_samples);
input = new_data;
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
memory_info, input.data(), input.size(), input_node_dims, 2);
Ort::Value state_ort = Ort::Value::CreateTensor<float>(
memory_info, _state.data(), _state.size(), state_node_dims, 3);
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
ort_inputs.clear();
ort_inputs.emplace_back(std::move(input_ort));
ort_inputs.emplace_back(std::move(state_ort));
ort_inputs.emplace_back(std::move(sr_ort));
ort_outputs = session->Run(
Ort::RunOptions{ nullptr },
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
output_node_names.data(), output_node_names.size());
float speech_prob = ort_outputs[0].GetTensorMutableData<float>()[0];
float* stateN = ort_outputs[1].GetTensorMutableData<float>();
std::memcpy(_state.data(), stateN, size_state * sizeof(float));
current_sample += static_cast<unsigned int>(window_size_samples);
if (speech_prob >= threshold) {
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples;
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0f * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif
if (temp_end != 0) {
temp_end = 0;
if (next_start < prev_end)
next_start = current_sample - window_size_samples;
}
if (!triggered) {
triggered = true;
current_speech.start = current_sample - window_size_samples;
}
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
return;
}
if (triggered && ((current_sample - current_speech.start) > max_speech_samples)) {
if (prev_end > 0) {
current_speech.end = prev_end;
speeches.push_back(current_speech);
current_speech = timestamp_t();
if (next_start < prev_end)
triggered = false;
else
current_speech.start = next_start;
prev_end = 0;
next_start = 0;
temp_end = 0;
}
else {
current_speech.end = current_sample;
speeches.push_back(current_speech);
current_speech = timestamp_t();
prev_end = 0;
next_start = 0;
temp_end = 0;
triggered = false;
}
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
return;
}
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold)) {
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
return;
}
if (speech_prob < (threshold - 0.15)) {
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples - speech_pad_samples;
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0f * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif
if (triggered) {
if (temp_end == 0)
temp_end = current_sample;
if (current_sample - temp_end > min_silence_samples_at_max_speech)
prev_end = temp_end;
if ((current_sample - temp_end) >= min_silence_samples) {
current_speech.end = temp_end;
if (current_speech.end - current_speech.start > min_speech_samples) {
speeches.push_back(current_speech);
current_speech = timestamp_t();
prev_end = 0;
next_start = 0;
temp_end = 0;
triggered = false;
}
}
}
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
return;
}
}
public:
void process(const std::vector<float>& input_wav) {
reset_states();
audio_length_samples = static_cast<int>(input_wav.size());
for (size_t j = 0; j < static_cast<size_t>(audio_length_samples); j += static_cast<size_t>(window_size_samples)) {
if (j + static_cast<size_t>(window_size_samples) > static_cast<size_t>(audio_length_samples))
break;
std::vector<float> chunk(&input_wav[j], &input_wav[j] + window_size_samples);
predict(chunk);
}
if (current_speech.start >= 0) {
current_speech.end = audio_length_samples;
speeches.push_back(current_speech);
current_speech = timestamp_t();
prev_end = 0;
next_start = 0;
temp_end = 0;
triggered = false;
}
}
const std::vector<timestamp_t> get_speech_timestamps() const {
return speeches;
}
void reset() {
reset_states();
}
public:
VadIterator(const std::wstring ModelPath,
int Sample_rate = 16000, int windows_frame_size = 32,
float Threshold = 0.5, int min_silence_duration_ms = 100,
int speech_pad_ms = 30, int min_speech_duration_ms = 250,
float max_speech_duration_s = std::numeric_limits<float>::infinity())
: sample_rate(Sample_rate), threshold(Threshold), speech_pad_samples(speech_pad_ms), prev_end(0)
{
sr_per_ms = sample_rate / 1000;
window_size_samples = windows_frame_size * sr_per_ms;
effective_window_size = window_size_samples + context_samples;
input_node_dims[0] = 1;
input_node_dims[1] = effective_window_size;
_state.resize(size_state);
sr.resize(1);
sr[0] = sample_rate;
_context.assign(context_samples, 0.0f);
min_speech_samples = sr_per_ms * min_speech_duration_ms;
max_speech_samples = (sample_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples);
min_silence_samples = sr_per_ms * min_silence_duration_ms;
min_silence_samples_at_max_speech = sr_per_ms * 98;
init_onnx_model(ModelPath);
}
};
int main() {
wav::WavReader wav_reader("audio/recorder.wav");
int numSamples = wav_reader.num_samples();
std::vector<float> input_wav(static_cast<size_t>(numSamples));
for (size_t i = 0; i < static_cast<size_t>(numSamples); i++) {
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
}
std::wstring model_path = L"model/silero_vad.onnx";
VadIterator vad(model_path);
vad.process(input_wav);
std::vector<timestamp_t> stamps = vad.get_speech_timestamps();
const float sample_rate_float = 16000.0f;
for (size_t i = 0; i < stamps.size(); i++) {
float start_sec = std::rint((stamps[i].start / sample_rate_float) * 10.0f) / 10.0f;
float end_sec = std::rint((stamps[i].end / sample_rate_float) * 10.0f) / 10.0f;
std::cout << "Speech detected from "
<< std::fixed << std::setprecision(1) << start_sec
<< " s to "
<< std::fixed << std::setprecision(1) << end_sec
<< " s" << std::endl;
}
vad.reset();
return 0;
}