Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
snakers4
GitHub Repository: snakers4/silero-vad
Path: blob/master/examples/microphone_and_webRTC_integration/microphone_and_webRTC_integration.py
1171 views
1
import collections, queue
2
import numpy as np
3
import pyaudio
4
import webrtcvad
5
from halo import Halo
6
import torch
7
import torchaudio
8
9
class Audio(object):
10
"""Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""
11
12
FORMAT = pyaudio.paInt16
13
# Network/VAD rate-space
14
RATE_PROCESS = 16000
15
CHANNELS = 1
16
BLOCKS_PER_SECOND = 50
17
18
def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS):
19
def proxy_callback(in_data, frame_count, time_info, status):
20
#pylint: disable=unused-argument
21
callback(in_data)
22
return (None, pyaudio.paContinue)
23
if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data)
24
self.buffer_queue = queue.Queue()
25
self.device = device
26
self.input_rate = input_rate
27
self.sample_rate = self.RATE_PROCESS
28
self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND))
29
self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND))
30
self.pa = pyaudio.PyAudio()
31
32
kwargs = {
33
'format': self.FORMAT,
34
'channels': self.CHANNELS,
35
'rate': self.input_rate,
36
'input': True,
37
'frames_per_buffer': self.block_size_input,
38
'stream_callback': proxy_callback,
39
}
40
41
self.chunk = None
42
# if not default device
43
if self.device:
44
kwargs['input_device_index'] = self.device
45
46
self.stream = self.pa.open(**kwargs)
47
self.stream.start_stream()
48
49
def read(self):
50
"""Return a block of audio data, blocking if necessary."""
51
return self.buffer_queue.get()
52
53
def destroy(self):
54
self.stream.stop_stream()
55
self.stream.close()
56
self.pa.terminate()
57
58
frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate)
59
60
61
class VADAudio(Audio):
62
"""Filter & segment audio with voice activity detection."""
63
64
def __init__(self, aggressiveness=3, device=None, input_rate=None):
65
super().__init__(device=device, input_rate=input_rate)
66
self.vad = webrtcvad.Vad(aggressiveness)
67
68
def frame_generator(self):
69
"""Generator that yields all audio frames from microphone."""
70
if self.input_rate == self.RATE_PROCESS:
71
while True:
72
yield self.read()
73
else:
74
raise Exception("Resampling required")
75
76
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
77
"""Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
78
Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
79
Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
80
|---utterence---| |---utterence---|
81
"""
82
if frames is None: frames = self.frame_generator()
83
num_padding_frames = padding_ms // self.frame_duration_ms
84
ring_buffer = collections.deque(maxlen=num_padding_frames)
85
triggered = False
86
87
for frame in frames:
88
if len(frame) < 640:
89
return
90
91
is_speech = self.vad.is_speech(frame, self.sample_rate)
92
93
if not triggered:
94
ring_buffer.append((frame, is_speech))
95
num_voiced = len([f for f, speech in ring_buffer if speech])
96
if num_voiced > ratio * ring_buffer.maxlen:
97
triggered = True
98
for f, s in ring_buffer:
99
yield f
100
ring_buffer.clear()
101
102
else:
103
yield frame
104
ring_buffer.append((frame, is_speech))
105
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
106
if num_unvoiced > ratio * ring_buffer.maxlen:
107
triggered = False
108
yield None
109
ring_buffer.clear()
110
111
def main(ARGS):
112
# Start audio with VAD
113
vad_audio = VADAudio(aggressiveness=ARGS.webRTC_aggressiveness,
114
device=ARGS.device,
115
input_rate=ARGS.rate)
116
117
print("Listening (ctrl-C to exit)...")
118
frames = vad_audio.vad_collector()
119
120
# load silero VAD
121
torchaudio.set_audio_backend("soundfile")
122
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
123
model=ARGS.silaro_model_name,
124
force_reload= ARGS.reload)
125
(get_speech_ts,_,_, _,_, _, _) = utils
126
127
128
# Stream from microphone to DeepSpeech using VAD
129
spinner = None
130
if not ARGS.nospinner:
131
spinner = Halo(spinner='line')
132
wav_data = bytearray()
133
for frame in frames:
134
if frame is not None:
135
if spinner: spinner.start()
136
137
wav_data.extend(frame)
138
else:
139
if spinner: spinner.stop()
140
print("webRTC has detected a possible speech")
141
142
newsound= np.frombuffer(wav_data,np.int16)
143
audio_float32=Int2Float(newsound)
144
time_stamps =get_speech_ts(audio_float32, model,num_steps=ARGS.num_steps,trig_sum=ARGS.trig_sum,neg_trig_sum=ARGS.neg_trig_sum,
145
num_samples_per_window=ARGS.num_samples_per_window,min_speech_samples=ARGS.min_speech_samples,
146
min_silence_samples=ARGS.min_silence_samples)
147
148
if(len(time_stamps)>0):
149
print("silero VAD has detected a possible speech")
150
else:
151
print("silero VAD has detected a noise")
152
print()
153
wav_data = bytearray()
154
155
156
def Int2Float(sound):
157
_sound = np.copy(sound) #
158
abs_max = np.abs(_sound).max()
159
_sound = _sound.astype('float32')
160
if abs_max > 0:
161
_sound *= 1/abs_max
162
audio_float32 = torch.from_numpy(_sound.squeeze())
163
return audio_float32
164
165
if __name__ == '__main__':
166
DEFAULT_SAMPLE_RATE = 16000
167
168
import argparse
169
parser = argparse.ArgumentParser(description="Stream from microphone to webRTC and silero VAD")
170
171
parser.add_argument('-v', '--webRTC_aggressiveness', type=int, default=3,
172
help="Set aggressiveness of webRTC: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3")
173
parser.add_argument('--nospinner', action='store_true',
174
help="Disable spinner")
175
parser.add_argument('-d', '--device', type=int, default=None,
176
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().")
177
178
parser.add_argument('-name', '--silaro_model_name', type=str, default="silero_vad",
179
help="select the name of the model. You can select between 'silero_vad',''silero_vad_micro','silero_vad_micro_8k','silero_vad_mini','silero_vad_mini_8k'")
180
parser.add_argument('--reload', action='store_true',help="download the last version of the silero vad")
181
182
parser.add_argument('-ts', '--trig_sum', type=float, default=0.25,
183
help="overlapping windows are used for each audio chunk, trig sum defines average probability among those windows for switching into triggered state (speech state)")
184
185
parser.add_argument('-nts', '--neg_trig_sum', type=float, default=0.07,
186
help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")
187
188
parser.add_argument('-N', '--num_steps', type=int, default=8,
189
help="number of overlapping windows to split audio chunk into (we recommend 4 or 8)")
190
191
parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
192
help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")
193
194
parser.add_argument('-msps', '--min_speech_samples', type=int, default=10000,
195
help="minimum speech chunk duration in samples")
196
197
parser.add_argument('-msis', '--min_silence_samples', type=int, default=500,
198
help=" minimum silence duration in samples between to separate speech chunks")
199
ARGS = parser.parse_args()
200
ARGS.rate=DEFAULT_SAMPLE_RATE
201
main(ARGS)
202
203