Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
snakers4
GitHub Repository: snakers4/silero-vad
Path: blob/master/tuning/utils.py
1903 views
1
from sklearn.metrics import roc_auc_score, accuracy_score
2
from torch.utils.data import Dataset
3
import torch.nn as nn
4
from tqdm import tqdm
5
import pandas as pd
6
import numpy as np
7
import torchaudio
8
import warnings
9
import random
10
import torch
11
import gc
12
warnings.filterwarnings('ignore')
13
14
15
def read_audio(path: str,
16
sampling_rate: int = 16000,
17
normalize=False):
18
19
wav, sr = torchaudio.load(path)
20
21
if wav.size(0) > 1:
22
wav = wav.mean(dim=0, keepdim=True)
23
24
if sampling_rate:
25
if sr != sampling_rate:
26
transform = torchaudio.transforms.Resample(orig_freq=sr,
27
new_freq=sampling_rate)
28
wav = transform(wav)
29
sr = sampling_rate
30
31
if normalize and wav.abs().max() != 0:
32
wav = wav / wav.abs().max()
33
34
return wav.squeeze(0)
35
36
37
def build_audiomentations_augs(p):
38
from audiomentations import SomeOf, AirAbsorption, BandPassFilter, BandStopFilter, ClippingDistortion, HighPassFilter, HighShelfFilter, \
39
LowPassFilter, LowShelfFilter, Mp3Compression, PeakingFilter, PitchShift, RoomSimulator, SevenBandParametricEQ, \
40
Aliasing, AddGaussianNoise
41
transforms = [Aliasing(p=1),
42
AddGaussianNoise(p=1),
43
AirAbsorption(p=1),
44
BandPassFilter(p=1),
45
BandStopFilter(p=1),
46
ClippingDistortion(p=1),
47
HighPassFilter(p=1),
48
HighShelfFilter(p=1),
49
LowPassFilter(p=1),
50
LowShelfFilter(p=1),
51
Mp3Compression(p=1),
52
PeakingFilter(p=1),
53
PitchShift(p=1),
54
RoomSimulator(p=1, leave_length_unchanged=True),
55
SevenBandParametricEQ(p=1)]
56
tr = SomeOf((1, 3), transforms=transforms, p=p)
57
return tr
58
59
60
class SileroVadDataset(Dataset):
61
def __init__(self,
62
config,
63
mode='train'):
64
65
self.num_samples = 512 # constant, do not change
66
self.sr = 16000 # constant, do not change
67
68
self.resample_to_8k = config.tune_8k
69
self.noise_loss = config.noise_loss
70
self.max_train_length_sec = config.max_train_length_sec
71
self.max_train_length_samples = config.max_train_length_sec * self.sr
72
73
assert self.max_train_length_samples % self.num_samples == 0
74
assert mode in ['train', 'val']
75
76
dataset_path = config.train_dataset_path if mode == 'train' else config.val_dataset_path
77
self.dataframe = pd.read_feather(dataset_path).reset_index(drop=True)
78
self.index_dict = self.dataframe.to_dict('index')
79
self.mode = mode
80
print(f'DATASET SIZE : {len(self.dataframe)}')
81
82
if mode == 'train':
83
self.augs = build_audiomentations_augs(p=config.aug_prob)
84
else:
85
self.augs = None
86
87
def __getitem__(self, idx):
88
idx = None if self.mode == 'train' else idx
89
wav, gt, mask = self.load_speech_sample(idx)
90
91
if self.mode == 'train':
92
wav = self.add_augs(wav)
93
if len(wav) > self.max_train_length_samples:
94
wav = wav[:self.max_train_length_samples]
95
gt = gt[:int(self.max_train_length_samples / self.num_samples)]
96
mask = mask[:int(self.max_train_length_samples / self.num_samples)]
97
98
wav = torch.FloatTensor(wav)
99
if self.resample_to_8k:
100
transform = torchaudio.transforms.Resample(orig_freq=self.sr,
101
new_freq=8000)
102
wav = transform(wav)
103
return wav, torch.FloatTensor(gt), torch.from_numpy(mask)
104
105
def __len__(self):
106
return len(self.index_dict)
107
108
def load_speech_sample(self, idx=None):
109
if idx is None:
110
idx = random.randint(0, len(self.index_dict) - 1)
111
wav = read_audio(self.index_dict[idx]['audio_path'], self.sr).numpy()
112
113
if len(wav) % self.num_samples != 0:
114
pad_num = self.num_samples - (len(wav) % (self.num_samples))
115
wav = np.pad(wav, (0, pad_num), 'constant', constant_values=0)
116
117
gt, mask = self.get_ground_truth_annotated(self.index_dict[idx]['speech_ts'], len(wav))
118
119
assert len(gt) == len(wav) / self.num_samples
120
121
return wav, gt, mask
122
123
def get_ground_truth_annotated(self, annotation, audio_length_samples):
124
gt = np.zeros(audio_length_samples)
125
126
for i in annotation:
127
gt[int(i['start'] * self.sr): int(i['end'] * self.sr)] = 1
128
129
squeezed_predicts = np.average(gt.reshape(-1, self.num_samples), axis=1)
130
squeezed_predicts = (squeezed_predicts > 0.5).astype(int)
131
mask = np.ones(len(squeezed_predicts))
132
mask[squeezed_predicts == 0] = self.noise_loss
133
return squeezed_predicts, mask
134
135
def add_augs(self, wav):
136
while True:
137
try:
138
wav_aug = self.augs(wav, self.sr)
139
if np.isnan(wav_aug.max()) or np.isnan(wav_aug.min()):
140
return wav
141
return wav_aug
142
except Exception as e:
143
continue
144
145
146
def SileroVadPadder(batch):
147
wavs = [batch[i][0] for i in range(len(batch))]
148
labels = [batch[i][1] for i in range(len(batch))]
149
masks = [batch[i][2] for i in range(len(batch))]
150
151
wavs = torch.nn.utils.rnn.pad_sequence(
152
wavs, batch_first=True, padding_value=0)
153
154
labels = torch.nn.utils.rnn.pad_sequence(
155
labels, batch_first=True, padding_value=0)
156
157
masks = torch.nn.utils.rnn.pad_sequence(
158
masks, batch_first=True, padding_value=0)
159
160
return wavs, labels, masks
161
162
163
class VADDecoderRNNJIT(nn.Module):
164
165
def __init__(self):
166
super(VADDecoderRNNJIT, self).__init__()
167
168
self.rnn = nn.LSTMCell(128, 128)
169
self.decoder = nn.Sequential(nn.Dropout(0.1),
170
nn.ReLU(),
171
nn.Conv1d(128, 1, kernel_size=1),
172
nn.Sigmoid())
173
174
def forward(self, x, state=torch.zeros(0)):
175
x = x.squeeze(-1)
176
if len(state):
177
h, c = self.rnn(x, (state[0], state[1]))
178
else:
179
h, c = self.rnn(x)
180
181
x = h.unsqueeze(-1).float()
182
state = torch.stack([h, c])
183
x = self.decoder(x)
184
return x, state
185
186
187
class AverageMeter(object):
188
"""Computes and stores the average and current value"""
189
190
def __init__(self):
191
self.reset()
192
193
def reset(self):
194
self.val = 0
195
self.avg = 0
196
self.sum = 0
197
self.count = 0
198
199
def update(self, val, n=1):
200
self.val = val
201
self.sum += val * n
202
self.count += n
203
self.avg = self.sum / self.count
204
205
206
def train(config,
207
loader,
208
jit_model,
209
decoder,
210
criterion,
211
optimizer,
212
device):
213
214
losses = AverageMeter()
215
decoder.train()
216
217
context_size = 32 if config.tune_8k else 64
218
num_samples = 256 if config.tune_8k else 512
219
stft_layer = jit_model._model_8k.stft if config.tune_8k else jit_model._model.stft
220
encoder_layer = jit_model._model_8k.encoder if config.tune_8k else jit_model._model.encoder
221
222
with torch.enable_grad():
223
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
224
targets = targets.to(device)
225
x = x.to(device)
226
masks = masks.to(device)
227
x = torch.nn.functional.pad(x, (context_size, 0))
228
229
outs = []
230
state = torch.zeros(0)
231
for i in range(context_size, x.shape[1], num_samples):
232
input_ = x[:, i-context_size:i+num_samples]
233
out = stft_layer(input_)
234
out = encoder_layer(out)
235
out, state = decoder(out, state)
236
outs.append(out)
237
stacked = torch.cat(outs, dim=2).squeeze(1)
238
239
loss = criterion(stacked, targets)
240
loss = (loss * masks).mean()
241
optimizer.zero_grad()
242
loss.backward()
243
optimizer.step()
244
losses.update(loss.item(), masks.numel())
245
246
torch.cuda.empty_cache()
247
gc.collect()
248
249
return losses.avg
250
251
252
def validate(config,
253
loader,
254
jit_model,
255
decoder,
256
criterion,
257
device):
258
259
losses = AverageMeter()
260
decoder.eval()
261
262
predicts = []
263
gts = []
264
265
context_size = 32 if config.tune_8k else 64
266
num_samples = 256 if config.tune_8k else 512
267
stft_layer = jit_model._model_8k.stft if config.tune_8k else jit_model._model.stft
268
encoder_layer = jit_model._model_8k.encoder if config.tune_8k else jit_model._model.encoder
269
270
with torch.no_grad():
271
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
272
targets = targets.to(device)
273
x = x.to(device)
274
masks = masks.to(device)
275
x = torch.nn.functional.pad(x, (context_size, 0))
276
277
outs = []
278
state = torch.zeros(0)
279
for i in range(context_size, x.shape[1], num_samples):
280
input_ = x[:, i-context_size:i+num_samples]
281
out = stft_layer(input_)
282
out = encoder_layer(out)
283
out, state = decoder(out, state)
284
outs.append(out)
285
stacked = torch.cat(outs, dim=2).squeeze(1)
286
287
predicts.extend(stacked[masks != 0].tolist())
288
gts.extend(targets[masks != 0].tolist())
289
290
loss = criterion(stacked, targets)
291
loss = (loss * masks).mean()
292
losses.update(loss.item(), masks.numel())
293
score = roc_auc_score(gts, predicts)
294
295
torch.cuda.empty_cache()
296
gc.collect()
297
298
return losses.avg, round(score, 3)
299
300
301
def init_jit_model(model_path: str,
302
device=torch.device('cpu')):
303
torch.set_grad_enabled(False)
304
model = torch.jit.load(model_path, map_location=device)
305
model.eval()
306
return model
307
308
309
def predict(model, loader, device, sr):
310
with torch.no_grad():
311
all_predicts = []
312
all_gts = []
313
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
314
x = x.to(device)
315
out = model.audio_forward(x, sr=sr)
316
317
for i, out_chunk in enumerate(out):
318
predict = out_chunk[masks[i] != 0].cpu().tolist()
319
gt = targets[i, masks[i] != 0].cpu().tolist()
320
321
all_predicts.append(predict)
322
all_gts.append(gt)
323
return all_predicts, all_gts
324
325
326
def calculate_best_thresholds(all_predicts, all_gts):
327
best_acc = 0
328
for ths_enter in tqdm(np.linspace(0, 1, 20)):
329
for ths_exit in np.linspace(0, 1, 20):
330
if ths_exit >= ths_enter:
331
continue
332
333
accs = []
334
for j, predict in enumerate(all_predicts):
335
predict_bool = []
336
is_speech = False
337
for i in predict:
338
if i >= ths_enter:
339
is_speech = True
340
predict_bool.append(1)
341
elif i <= ths_exit:
342
is_speech = False
343
predict_bool.append(0)
344
else:
345
val = 1 if is_speech else 0
346
predict_bool.append(val)
347
348
score = round(accuracy_score(all_gts[j], predict_bool), 4)
349
accs.append(score)
350
351
mean_acc = round(np.mean(accs), 3)
352
if mean_acc > best_acc:
353
best_acc = mean_acc
354
best_ths_enter = round(ths_enter, 2)
355
best_ths_exit = round(ths_exit, 2)
356
return best_ths_enter, best_ths_exit, best_acc
357
358