Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
stenzek
GitHub Repository: stenzek/duckstation
Path: blob/master/dep/xxhash/include/xxhash.h
4251 views
1
/*
2
* xxHash - Extremely Fast Hash algorithm
3
* Header File
4
* Copyright (C) 2012-2020 Yann Collet
5
*
6
* BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions are
10
* met:
11
*
12
* * Redistributions of source code must retain the above copyright
13
* notice, this list of conditions and the following disclaimer.
14
* * Redistributions in binary form must reproduce the above
15
* copyright notice, this list of conditions and the following disclaimer
16
* in the documentation and/or other materials provided with the
17
* distribution.
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
*
31
* You can contact the author at:
32
* - xxHash homepage: https://www.xxhash.com
33
* - xxHash source repository: https://github.com/Cyan4973/xxHash
34
*/
35
/*!
36
* @mainpage xxHash
37
*
38
* @file xxhash.h
39
* xxHash prototypes and implementation
40
*/
41
/* TODO: update */
42
/* Notice extracted from xxHash homepage:
43
44
xxHash is an extremely fast hash algorithm, running at RAM speed limits.
45
It also successfully passes all tests from the SMHasher suite.
46
47
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
48
49
Name Speed Q.Score Author
50
xxHash 5.4 GB/s 10
51
CrapWow 3.2 GB/s 2 Andrew
52
MurmurHash 3a 2.7 GB/s 10 Austin Appleby
53
SpookyHash 2.0 GB/s 10 Bob Jenkins
54
SBox 1.4 GB/s 9 Bret Mulvey
55
Lookup3 1.2 GB/s 9 Bob Jenkins
56
SuperFastHash 1.2 GB/s 1 Paul Hsieh
57
CityHash64 1.05 GB/s 10 Pike & Alakuijala
58
FNV 0.55 GB/s 5 Fowler, Noll, Vo
59
CRC32 0.43 GB/s 9
60
MD5-32 0.33 GB/s 10 Ronald L. Rivest
61
SHA1-32 0.28 GB/s 10
62
63
Q.Score is a measure of quality of the hash function.
64
It depends on successfully passing SMHasher test set.
65
10 is a perfect score.
66
67
Note: SMHasher's CRC32 implementation is not the fastest one.
68
Other speed-oriented implementations can be faster,
69
especially in combination with PCLMUL instruction:
70
https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
71
72
A 64-bit version, named XXH64, is available since r35.
73
It offers much better speed, but for 64-bit applications only.
74
Name Speed on 64 bits Speed on 32 bits
75
XXH64 13.8 GB/s 1.9 GB/s
76
XXH32 6.8 GB/s 6.0 GB/s
77
*/
78
79
#if defined (__cplusplus)
80
extern "C" {
81
#endif
82
83
/* ****************************
84
* INLINE mode
85
******************************/
86
/*!
87
* XXH_INLINE_ALL (and XXH_PRIVATE_API)
88
* Use these build macros to inline xxhash into the target unit.
89
* Inlining improves performance on small inputs, especially when the length is
90
* expressed as a compile-time constant:
91
*
92
* https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
93
*
94
* It also keeps xxHash symbols private to the unit, so they are not exported.
95
*
96
* Usage:
97
* #define XXH_INLINE_ALL
98
* #include "xxhash.h"
99
*
100
* Do not compile and link xxhash.o as a separate object, as it is not useful.
101
*/
102
#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
103
&& !defined(XXH_INLINE_ALL_31684351384)
104
/* this section should be traversed only once */
105
# define XXH_INLINE_ALL_31684351384
106
/* give access to the advanced API, required to compile implementations */
107
# undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
108
# define XXH_STATIC_LINKING_ONLY
109
/* make all functions private */
110
# undef XXH_PUBLIC_API
111
# if defined(__GNUC__)
112
# define XXH_PUBLIC_API static __inline __attribute__((unused))
113
# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
114
# define XXH_PUBLIC_API static inline
115
# elif defined(_MSC_VER)
116
# define XXH_PUBLIC_API static __inline
117
# else
118
/* note: this version may generate warnings for unused static functions */
119
# define XXH_PUBLIC_API static
120
# endif
121
122
/*
123
* This part deals with the special case where a unit wants to inline xxHash,
124
* but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
125
* as part of some previously included *.h header file.
126
* Without further action, the new include would just be ignored,
127
* and functions would effectively _not_ be inlined (silent failure).
128
* The following macros solve this situation by prefixing all inlined names,
129
* avoiding naming collision with previous inclusions.
130
*/
131
# ifdef XXH_NAMESPACE
132
# error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
133
/*
134
* Note: Alternative: #undef all symbols (it's a pretty large list).
135
* Without #error: it compiles, but functions are actually not inlined.
136
*/
137
# endif
138
# define XXH_NAMESPACE XXH_INLINE_
139
/*
140
* Some identifiers (enums, type names) are not symbols, but they must
141
* still be renamed to avoid redeclaration.
142
* Alternative solution: do not redeclare them.
143
* However, this requires some #ifdefs, and is a more dispersed action.
144
* Meanwhile, renaming can be achieved in a single block
145
*/
146
# define XXH_IPREF(Id) XXH_INLINE_ ## Id
147
# define XXH_OK XXH_IPREF(XXH_OK)
148
# define XXH_ERROR XXH_IPREF(XXH_ERROR)
149
# define XXH_errorcode XXH_IPREF(XXH_errorcode)
150
# define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
151
# define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
152
# define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
153
# define XXH32_state_s XXH_IPREF(XXH32_state_s)
154
# define XXH32_state_t XXH_IPREF(XXH32_state_t)
155
# define XXH64_state_s XXH_IPREF(XXH64_state_s)
156
# define XXH64_state_t XXH_IPREF(XXH64_state_t)
157
# define XXH3_state_s XXH_IPREF(XXH3_state_s)
158
# define XXH3_state_t XXH_IPREF(XXH3_state_t)
159
# define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
160
/* Ensure the header is parsed again, even if it was previously included */
161
# undef XXHASH_H_5627135585666179
162
# undef XXHASH_H_STATIC_13879238742
163
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
164
165
166
167
/* ****************************************************************
168
* Stable API
169
*****************************************************************/
170
#ifndef XXHASH_H_5627135585666179
171
#define XXHASH_H_5627135585666179 1
172
173
174
/*!
175
* @defgroup public Public API
176
* Contains details on the public xxHash functions.
177
* @{
178
*/
179
/* specific declaration modes for Windows */
180
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
181
# if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
182
# ifdef XXH_EXPORT
183
# define XXH_PUBLIC_API __declspec(dllexport)
184
# elif XXH_IMPORT
185
# define XXH_PUBLIC_API __declspec(dllimport)
186
# endif
187
# else
188
# define XXH_PUBLIC_API /* do nothing */
189
# endif
190
#endif
191
192
#ifdef XXH_DOXYGEN
193
/*!
194
* @brief Emulate a namespace by transparently prefixing all symbols.
195
*
196
* If you want to include _and expose_ xxHash functions from within your own
197
* library, but also want to avoid symbol collisions with other libraries which
198
* may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
199
* any public symbol from xxhash library with the value of XXH_NAMESPACE
200
* (therefore, avoid empty or numeric values).
201
*
202
* Note that no change is required within the calling program as long as it
203
* includes `xxhash.h`: Regular symbol names will be automatically translated
204
* by this header.
205
*/
206
# define XXH_NAMESPACE /* YOUR NAME HERE */
207
# undef XXH_NAMESPACE
208
#endif
209
210
#ifdef XXH_NAMESPACE
211
# define XXH_CAT(A,B) A##B
212
# define XXH_NAME2(A,B) XXH_CAT(A,B)
213
# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
214
/* XXH32 */
215
# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
216
# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
217
# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
218
# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
219
# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
220
# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
221
# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
222
# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
223
# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
224
/* XXH64 */
225
# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
226
# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
227
# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
228
# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
229
# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
230
# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
231
# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
232
# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
233
# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
234
/* XXH3_64bits */
235
# define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
236
# define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
237
# define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
238
# define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
239
# define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
240
# define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
241
# define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
242
# define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
243
# define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
244
# define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
245
# define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
246
# define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
247
/* XXH3_128bits */
248
# define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
249
# define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
250
# define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
251
# define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
252
# define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
253
# define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
254
# define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
255
# define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
256
# define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
257
# define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
258
# define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
259
# define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
260
# define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
261
#endif
262
263
264
/* *************************************
265
* Version
266
***************************************/
267
#define XXH_VERSION_MAJOR 0
268
#define XXH_VERSION_MINOR 8
269
#define XXH_VERSION_RELEASE 0
270
#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
271
272
/*!
273
* @brief Obtains the xxHash version.
274
*
275
* This is only useful when xxHash is compiled as a shared library, as it is
276
* independent of the version defined in the header.
277
*
278
* @return `XXH_VERSION_NUMBER` as of when the function was compiled.
279
*/
280
XXH_PUBLIC_API unsigned XXH_versionNumber (void);
281
282
283
/* ****************************
284
* Definitions
285
******************************/
286
#include <stddef.h> /* size_t */
287
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
288
289
290
/*-**********************************************************************
291
* 32-bit hash
292
************************************************************************/
293
#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
294
/*!
295
* @brief An unsigned 32-bit integer.
296
*
297
* Not necessarily defined to `uint32_t` but functionally equivalent.
298
*/
299
typedef uint32_t XXH32_hash_t;
300
#elif !defined (__VMS) \
301
&& (defined (__cplusplus) \
302
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
303
# include <stdint.h>
304
typedef uint32_t XXH32_hash_t;
305
#else
306
# include <limits.h>
307
# if UINT_MAX == 0xFFFFFFFFUL
308
typedef unsigned int XXH32_hash_t;
309
# else
310
# if ULONG_MAX == 0xFFFFFFFFUL
311
typedef unsigned long XXH32_hash_t;
312
# else
313
# error "unsupported platform: need a 32-bit type"
314
# endif
315
# endif
316
#endif
317
318
/*!
319
* @}
320
*
321
* @defgroup xxh32_family XXH32 family
322
* @ingroup public
323
* Contains functions used in the classic 32-bit xxHash algorithm.
324
*
325
* @note
326
* XXH32 is considered rather weak by today's standards.
327
* The @ref xxh3_family provides competitive speed for both 32-bit and 64-bit
328
* systems, and offers true 64/128 bit hash results. It provides a superior
329
* level of dispersion, and greatly reduces the risks of collisions.
330
*
331
* @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
332
* @see @ref xxh32_impl for implementation details
333
* @{
334
*/
335
336
/*!
337
* @brief Calculates the 32-bit hash of @p input using xxHash32.
338
*
339
* Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
340
*
341
* @param input The block of data to be hashed, at least @p length bytes in size.
342
* @param length The length of @p input, in bytes.
343
* @param seed The 32-bit seed to alter the hash's output predictably.
344
*
345
* @pre
346
* The memory between @p input and @p input + @p length must be valid,
347
* readable, contiguous memory. However, if @p length is `0`, @p input may be
348
* `NULL`. In C++, this also must be *TriviallyCopyable*.
349
*
350
* @return The calculated 32-bit hash value.
351
*
352
* @see
353
* XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
354
* Direct equivalents for the other variants of xxHash.
355
* @see
356
* XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
357
*/
358
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
359
360
/*!
361
* Streaming functions generate the xxHash value from an incrememtal input.
362
* This method is slower than single-call functions, due to state management.
363
* For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
364
*
365
* An XXH state must first be allocated using `XXH*_createState()`.
366
*
367
* Start a new hash by initializing the state with a seed using `XXH*_reset()`.
368
*
369
* Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
370
*
371
* The function returns an error code, with 0 meaning OK, and any other value
372
* meaning there is an error.
373
*
374
* Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
375
* This function returns the nn-bits hash as an int or long long.
376
*
377
* It's still possible to continue inserting input into the hash state after a
378
* digest, and generate new hash values later on by invoking `XXH*_digest()`.
379
*
380
* When done, release the state using `XXH*_freeState()`.
381
*
382
* Example code for incrementally hashing a file:
383
* @code{.c}
384
* #include <stdio.h>
385
* #include <xxhash.h>
386
* #define BUFFER_SIZE 256
387
*
388
* // Note: XXH64 and XXH3 use the same interface.
389
* XXH32_hash_t
390
* hashFile(FILE* stream)
391
* {
392
* XXH32_state_t* state;
393
* unsigned char buf[BUFFER_SIZE];
394
* size_t amt;
395
* XXH32_hash_t hash;
396
*
397
* state = XXH32_createState(); // Create a state
398
* assert(state != NULL); // Error check here
399
* XXH32_reset(state, 0xbaad5eed); // Reset state with our seed
400
* while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
401
* XXH32_update(state, buf, amt); // Hash the file in chunks
402
* }
403
* hash = XXH32_digest(state); // Finalize the hash
404
* XXH32_freeState(state); // Clean up
405
* return hash;
406
* }
407
* @endcode
408
*/
409
410
/*!
411
* @typedef struct XXH32_state_s XXH32_state_t
412
* @brief The opaque state struct for the XXH32 streaming API.
413
*
414
* @see XXH32_state_s for details.
415
*/
416
typedef struct XXH32_state_s XXH32_state_t;
417
418
/*!
419
* @brief Allocates an @ref XXH32_state_t.
420
*
421
* Must be freed with XXH32_freeState().
422
* @return An allocated XXH32_state_t on success, `NULL` on failure.
423
*/
424
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
425
/*!
426
* @brief Frees an @ref XXH32_state_t.
427
*
428
* Must be allocated with XXH32_createState().
429
* @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
430
* @return XXH_OK.
431
*/
432
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
433
/*!
434
* @brief Copies one @ref XXH32_state_t to another.
435
*
436
* @param dst_state The state to copy to.
437
* @param src_state The state to copy from.
438
* @pre
439
* @p dst_state and @p src_state must not be `NULL` and must not overlap.
440
*/
441
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
442
443
/*!
444
* @brief Resets an @ref XXH32_state_t to begin a new hash.
445
*
446
* This function resets and seeds a state. Call it before @ref XXH32_update().
447
*
448
* @param statePtr The state struct to reset.
449
* @param seed The 32-bit seed to alter the hash result predictably.
450
*
451
* @pre
452
* @p statePtr must not be `NULL`.
453
*
454
* @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
455
*/
456
XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
457
458
/*!
459
* @brief Consumes a block of @p input to an @ref XXH32_state_t.
460
*
461
* Call this to incrementally consume blocks of data.
462
*
463
* @param statePtr The state struct to update.
464
* @param input The block of data to be hashed, at least @p length bytes in size.
465
* @param length The length of @p input, in bytes.
466
*
467
* @pre
468
* @p statePtr must not be `NULL`.
469
* @pre
470
* The memory between @p input and @p input + @p length must be valid,
471
* readable, contiguous memory. However, if @p length is `0`, @p input may be
472
* `NULL`. In C++, this also must be *TriviallyCopyable*.
473
*
474
* @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
475
*/
476
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
477
478
/*!
479
* @brief Returns the calculated hash value from an @ref XXH32_state_t.
480
*
481
* @note
482
* Calling XXH32_digest() will not affect @p statePtr, so you can update,
483
* digest, and update again.
484
*
485
* @param statePtr The state struct to calculate the hash from.
486
*
487
* @pre
488
* @p statePtr must not be `NULL`.
489
*
490
* @return The calculated xxHash32 value from that state.
491
*/
492
XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
493
494
/******* Canonical representation *******/
495
496
/*
497
* The default return values from XXH functions are unsigned 32 and 64 bit
498
* integers.
499
* This the simplest and fastest format for further post-processing.
500
*
501
* However, this leaves open the question of what is the order on the byte level,
502
* since little and big endian conventions will store the same number differently.
503
*
504
* The canonical representation settles this issue by mandating big-endian
505
* convention, the same convention as human-readable numbers (large digits first).
506
*
507
* When writing hash values to storage, sending them over a network, or printing
508
* them, it's highly recommended to use the canonical representation to ensure
509
* portability across a wider range of systems, present and future.
510
*
511
* The following functions allow transformation of hash values to and from
512
* canonical format.
513
*/
514
515
/*!
516
* @brief Canonical (big endian) representation of @ref XXH32_hash_t.
517
*/
518
typedef struct {
519
unsigned char digest[4]; /*!< Hash bytes, big endian */
520
} XXH32_canonical_t;
521
522
/*!
523
* @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
524
*
525
* @param dst The @ref XXH32_canonical_t pointer to be stored to.
526
* @param hash The @ref XXH32_hash_t to be converted.
527
*
528
* @pre
529
* @p dst must not be `NULL`.
530
*/
531
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
532
533
/*!
534
* @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
535
*
536
* @param src The @ref XXH32_canonical_t to convert.
537
*
538
* @pre
539
* @p src must not be `NULL`.
540
*
541
* @return The converted hash.
542
*/
543
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
544
545
546
/*!
547
* @}
548
* @ingroup public
549
* @{
550
*/
551
552
#ifndef XXH_NO_LONG_LONG
553
/*-**********************************************************************
554
* 64-bit hash
555
************************************************************************/
556
#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
557
/*!
558
* @brief An unsigned 64-bit integer.
559
*
560
* Not necessarily defined to `uint64_t` but functionally equivalent.
561
*/
562
typedef uint64_t XXH64_hash_t;
563
#elif !defined (__VMS) \
564
&& (defined (__cplusplus) \
565
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
566
# include <stdint.h>
567
typedef uint64_t XXH64_hash_t;
568
#else
569
# include <limits.h>
570
# if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
571
/* LP64 ABI says uint64_t is unsigned long */
572
typedef unsigned long XXH64_hash_t;
573
# else
574
/* the following type must have a width of 64-bit */
575
typedef unsigned long long XXH64_hash_t;
576
# endif
577
#endif
578
579
/*!
580
* @}
581
*
582
* @defgroup xxh64_family XXH64 family
583
* @ingroup public
584
* @{
585
* Contains functions used in the classic 64-bit xxHash algorithm.
586
*
587
* @note
588
* XXH3 provides competitive speed for both 32-bit and 64-bit systems,
589
* and offers true 64/128 bit hash results. It provides a superior level of
590
* dispersion, and greatly reduces the risks of collisions.
591
*/
592
593
594
/*!
595
* @brief Calculates the 64-bit hash of @p input using xxHash64.
596
*
597
* This function usually runs faster on 64-bit systems, but slower on 32-bit
598
* systems (see benchmark).
599
*
600
* @param input The block of data to be hashed, at least @p length bytes in size.
601
* @param length The length of @p input, in bytes.
602
* @param seed The 64-bit seed to alter the hash's output predictably.
603
*
604
* @pre
605
* The memory between @p input and @p input + @p length must be valid,
606
* readable, contiguous memory. However, if @p length is `0`, @p input may be
607
* `NULL`. In C++, this also must be *TriviallyCopyable*.
608
*
609
* @return The calculated 64-bit hash.
610
*
611
* @see
612
* XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
613
* Direct equivalents for the other variants of xxHash.
614
* @see
615
* XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
616
*/
617
XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
618
619
/******* Streaming *******/
620
/*!
621
* @brief The opaque state struct for the XXH64 streaming API.
622
*
623
* @see XXH64_state_s for details.
624
*/
625
typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
626
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
627
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
628
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
629
630
XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
631
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
632
XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
633
634
/******* Canonical representation *******/
635
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
636
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
637
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
638
639
/*!
640
* @}
641
* ************************************************************************
642
* @defgroup xxh3_family XXH3 family
643
* @ingroup public
644
* @{
645
*
646
* XXH3 is a more recent hash algorithm featuring:
647
* - Improved speed for both small and large inputs
648
* - True 64-bit and 128-bit outputs
649
* - SIMD acceleration
650
* - Improved 32-bit viability
651
*
652
* Speed analysis methodology is explained here:
653
*
654
* https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
655
*
656
* Compared to XXH64, expect XXH3 to run approximately
657
* ~2x faster on large inputs and >3x faster on small ones,
658
* exact differences vary depending on platform.
659
*
660
* XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
661
* but does not require it.
662
* Any 32-bit and 64-bit targets that can run XXH32 smoothly
663
* can run XXH3 at competitive speeds, even without vector support.
664
* Further details are explained in the implementation.
665
*
666
* Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
667
* ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
668
*
669
* XXH3 implementation is portable:
670
* it has a generic C90 formulation that can be compiled on any platform,
671
* all implementations generage exactly the same hash value on all platforms.
672
* Starting from v0.8.0, it's also labelled "stable", meaning that
673
* any future version will also generate the same hash value.
674
*
675
* XXH3 offers 2 variants, _64bits and _128bits.
676
*
677
* When only 64 bits are needed, prefer invoking the _64bits variant, as it
678
* reduces the amount of mixing, resulting in faster speed on small inputs.
679
* It's also generally simpler to manipulate a scalar return type than a struct.
680
*
681
* The API supports one-shot hashing, streaming mode, and custom secrets.
682
*/
683
684
/*-**********************************************************************
685
* XXH3 64-bit variant
686
************************************************************************/
687
688
/* XXH3_64bits():
689
* default 64-bit variant, using default secret and default seed of 0.
690
* It's the fastest variant. */
691
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
692
693
/*
694
* XXH3_64bits_withSeed():
695
* This variant generates a custom secret on the fly
696
* based on default secret altered using the `seed` value.
697
* While this operation is decently fast, note that it's not completely free.
698
* Note: seed==0 produces the same results as XXH3_64bits().
699
*/
700
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
701
702
/*!
703
* The bare minimum size for a custom secret.
704
*
705
* @see
706
* XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
707
* XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
708
*/
709
#define XXH3_SECRET_SIZE_MIN 136
710
711
/*
712
* XXH3_64bits_withSecret():
713
* It's possible to provide any blob of bytes as a "secret" to generate the hash.
714
* This makes it more difficult for an external actor to prepare an intentional collision.
715
* The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
716
* However, the quality of produced hash values depends on secret's entropy.
717
* Technically, the secret must look like a bunch of random bytes.
718
* Avoid "trivial" or structured data such as repeated sequences or a text document.
719
* Whenever unsure about the "randomness" of the blob of bytes,
720
* consider relabelling it as a "custom seed" instead,
721
* and employ "XXH3_generateSecret()" (see below)
722
* to generate a high entropy secret derived from the custom seed.
723
*/
724
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
725
726
727
/******* Streaming *******/
728
/*
729
* Streaming requires state maintenance.
730
* This operation costs memory and CPU.
731
* As a consequence, streaming is slower than one-shot hashing.
732
* For better performance, prefer one-shot functions whenever applicable.
733
*/
734
735
/*!
736
* @brief The state struct for the XXH3 streaming API.
737
*
738
* @see XXH3_state_s for details.
739
*/
740
typedef struct XXH3_state_s XXH3_state_t;
741
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
742
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
743
XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
744
745
/*
746
* XXH3_64bits_reset():
747
* Initialize with default parameters.
748
* digest will be equivalent to `XXH3_64bits()`.
749
*/
750
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
751
/*
752
* XXH3_64bits_reset_withSeed():
753
* Generate a custom secret from `seed`, and store it into `statePtr`.
754
* digest will be equivalent to `XXH3_64bits_withSeed()`.
755
*/
756
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
757
/*
758
* XXH3_64bits_reset_withSecret():
759
* `secret` is referenced, it _must outlive_ the hash streaming session.
760
* Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
761
* and the quality of produced hash values depends on secret's entropy
762
* (secret's content should look like a bunch of random bytes).
763
* When in doubt about the randomness of a candidate `secret`,
764
* consider employing `XXH3_generateSecret()` instead (see below).
765
*/
766
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
767
768
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
769
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
770
771
/* note : canonical representation of XXH3 is the same as XXH64
772
* since they both produce XXH64_hash_t values */
773
774
775
/*-**********************************************************************
776
* XXH3 128-bit variant
777
************************************************************************/
778
779
/*!
780
* @brief The return value from 128-bit hashes.
781
*
782
* Stored in little endian order, although the fields themselves are in native
783
* endianness.
784
*/
785
typedef struct {
786
XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
787
XXH64_hash_t high64; /*!< `value >> 64` */
788
} XXH128_hash_t;
789
790
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
791
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
792
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
793
794
/******* Streaming *******/
795
/*
796
* Streaming requires state maintenance.
797
* This operation costs memory and CPU.
798
* As a consequence, streaming is slower than one-shot hashing.
799
* For better performance, prefer one-shot functions whenever applicable.
800
*
801
* XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
802
* Use already declared XXH3_createState() and XXH3_freeState().
803
*
804
* All reset and streaming functions have same meaning as their 64-bit counterpart.
805
*/
806
807
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
808
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
809
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
810
811
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
812
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
813
814
/* Following helper functions make it possible to compare XXH128_hast_t values.
815
* Since XXH128_hash_t is a structure, this capability is not offered by the language.
816
* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
817
818
/*!
819
* XXH128_isEqual():
820
* Return: 1 if `h1` and `h2` are equal, 0 if they are not.
821
*/
822
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
823
824
/*!
825
* XXH128_cmp():
826
*
827
* This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
828
*
829
* return: >0 if *h128_1 > *h128_2
830
* =0 if *h128_1 == *h128_2
831
* <0 if *h128_1 < *h128_2
832
*/
833
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
834
835
836
/******* Canonical representation *******/
837
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
838
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
839
XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
840
841
842
#endif /* XXH_NO_LONG_LONG */
843
844
/*!
845
* @}
846
*/
847
#endif /* XXHASH_H_5627135585666179 */
848
849
850
851
#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
852
#define XXHASH_H_STATIC_13879238742
853
/* ****************************************************************************
854
* This section contains declarations which are not guaranteed to remain stable.
855
* They may change in future versions, becoming incompatible with a different
856
* version of the library.
857
* These declarations should only be used with static linking.
858
* Never use them in association with dynamic linking!
859
***************************************************************************** */
860
861
/*
862
* These definitions are only present to allow static allocation
863
* of XXH states, on stack or in a struct, for example.
864
* Never **ever** access their members directly.
865
*/
866
867
/*!
868
* @internal
869
* @brief Structure for XXH32 streaming API.
870
*
871
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
872
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
873
* an opaque type. This allows fields to safely be changed.
874
*
875
* Typedef'd to @ref XXH32_state_t.
876
* Do not access the members of this struct directly.
877
* @see XXH64_state_s, XXH3_state_s
878
*/
879
struct XXH32_state_s {
880
XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
881
XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
882
XXH32_hash_t v1; /*!< First accumulator lane */
883
XXH32_hash_t v2; /*!< Second accumulator lane */
884
XXH32_hash_t v3; /*!< Third accumulator lane */
885
XXH32_hash_t v4; /*!< Fourth accumulator lane */
886
XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
887
XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
888
XXH32_hash_t reserved; /*!< Reserved field. Do not read or write to it, it may be removed. */
889
}; /* typedef'd to XXH32_state_t */
890
891
892
#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
893
894
/*!
895
* @internal
896
* @brief Structure for XXH64 streaming API.
897
*
898
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
899
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
900
* an opaque type. This allows fields to safely be changed.
901
*
902
* Typedef'd to @ref XXH64_state_t.
903
* Do not access the members of this struct directly.
904
* @see XXH32_state_s, XXH3_state_s
905
*/
906
struct XXH64_state_s {
907
XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
908
XXH64_hash_t v1; /*!< First accumulator lane */
909
XXH64_hash_t v2; /*!< Second accumulator lane */
910
XXH64_hash_t v3; /*!< Third accumulator lane */
911
XXH64_hash_t v4; /*!< Fourth accumulator lane */
912
XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
913
XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
914
XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
915
XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it, it may be removed. */
916
}; /* typedef'd to XXH64_state_t */
917
918
#if defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
919
# include <stdalign.h>
920
# define XXH_ALIGN(n) alignas(n)
921
#elif defined(__GNUC__)
922
# define XXH_ALIGN(n) __attribute__ ((aligned(n)))
923
#elif defined(_MSC_VER)
924
# define XXH_ALIGN(n) __declspec(align(n))
925
#else
926
# define XXH_ALIGN(n) /* disabled */
927
#endif
928
929
/* Old GCC versions only accept the attribute after the type in structures. */
930
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
931
&& defined(__GNUC__)
932
# define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
933
#else
934
# define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
935
#endif
936
937
/*!
938
* @brief The size of the internal XXH3 buffer.
939
*
940
* This is the optimal update size for incremental hashing.
941
*
942
* @see XXH3_64b_update(), XXH3_128b_update().
943
*/
944
#define XXH3_INTERNALBUFFER_SIZE 256
945
946
/*!
947
* @brief Default size of the secret buffer (and @ref XXH3_kSecret).
948
*
949
* This is the size used in @ref XXH3_kSecret and the seeded functions.
950
*
951
* Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
952
*/
953
#define XXH3_SECRET_DEFAULT_SIZE 192
954
955
/*!
956
* @internal
957
* @brief Structure for XXH3 streaming API.
958
*
959
* @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
960
* @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
961
* an opaque type. This allows fields to safely be changed.
962
*
963
* @note **This structure has a strict alignment requirement of 64 bytes.** Do
964
* not allocate this with `malloc()` or `new`, it will not be sufficiently
965
* aligned. Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack
966
* allocation.
967
*
968
* Typedef'd to @ref XXH3_state_t.
969
* Do not access the members of this struct directly.
970
*
971
* @see XXH3_INITSTATE() for stack initialization.
972
* @see XXH3_createState(), XXH3_freeState().
973
* @see XXH32_state_s, XXH64_state_s
974
*/
975
struct XXH3_state_s {
976
XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
977
/*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
978
XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
979
/*!< Used to store a custom secret generated from a seed. */
980
XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
981
/*!< The internal buffer. @see XXH32_state_s::mem32 */
982
XXH32_hash_t bufferedSize;
983
/*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
984
XXH32_hash_t reserved32;
985
/*!< Reserved field. Needed for padding on 64-bit. */
986
size_t nbStripesSoFar;
987
/*!< Number or stripes processed. */
988
XXH64_hash_t totalLen;
989
/*!< Total length hashed. 64-bit even on 32-bit targets. */
990
size_t nbStripesPerBlock;
991
/*!< Number of stripes per block. */
992
size_t secretLimit;
993
/*!< Size of @ref customSecret or @ref extSecret */
994
XXH64_hash_t seed;
995
/*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
996
XXH64_hash_t reserved64;
997
/*!< Reserved field. */
998
const unsigned char* extSecret;
999
/*!< Reference to an external secret for the _withSecret variants, NULL
1000
* for other variants. */
1001
/* note: there may be some padding at the end due to alignment on 64 bytes */
1002
}; /* typedef'd to XXH3_state_t */
1003
1004
#undef XXH_ALIGN_MEMBER
1005
1006
/*!
1007
* @brief Initializes a stack-allocated `XXH3_state_s`.
1008
*
1009
* When the @ref XXH3_state_t structure is merely emplaced on stack,
1010
* it should be initialized with XXH3_INITSTATE() or a memset()
1011
* in case its first reset uses XXH3_NNbits_reset_withSeed().
1012
* This init can be omitted if the first reset uses default or _withSecret mode.
1013
* This operation isn't necessary when the state is created with XXH3_createState().
1014
* Note that this doesn't prepare the state for a streaming operation,
1015
* it's still necessary to use XXH3_NNbits_reset*() afterwards.
1016
*/
1017
#define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
1018
1019
1020
/* === Experimental API === */
1021
/* Symbols defined below must be considered tied to a specific library version. */
1022
1023
/*
1024
* XXH3_generateSecret():
1025
*
1026
* Derive a high-entropy secret from any user-defined content, named customSeed.
1027
* The generated secret can be used in combination with `*_withSecret()` functions.
1028
* The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
1029
* as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
1030
*
1031
* The function accepts as input a custom seed of any length and any content,
1032
* and derives from it a high-entropy secret of length XXH3_SECRET_DEFAULT_SIZE
1033
* into an already allocated buffer secretBuffer.
1034
* The generated secret is _always_ XXH_SECRET_DEFAULT_SIZE bytes long.
1035
*
1036
* The generated secret can then be used with any `*_withSecret()` variant.
1037
* Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
1038
* `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
1039
* are part of this list. They all accept a `secret` parameter
1040
* which must be very long for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
1041
* _and_ feature very high entropy (consist of random-looking bytes).
1042
* These conditions can be a high bar to meet, so
1043
* this function can be used to generate a secret of proper quality.
1044
*
1045
* customSeed can be anything. It can have any size, even small ones,
1046
* and its content can be anything, even stupidly "low entropy" source such as a bunch of zeroes.
1047
* The resulting `secret` will nonetheless provide all expected qualities.
1048
*
1049
* Supplying NULL as the customSeed copies the default secret into `secretBuffer`.
1050
* When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1051
*/
1052
XXH_PUBLIC_API void XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize);
1053
1054
1055
/* simple short-cut to pre-selected XXH3_128bits variant */
1056
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
1057
1058
1059
#endif /* XXH_NO_LONG_LONG */
1060
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
1061
# define XXH_IMPLEMENTATION
1062
#endif
1063
1064
#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
1065
1066
1067
/* ======================================================================== */
1068
/* ======================================================================== */
1069
/* ======================================================================== */
1070
1071
1072
/*-**********************************************************************
1073
* xxHash implementation
1074
*-**********************************************************************
1075
* xxHash's implementation used to be hosted inside xxhash.c.
1076
*
1077
* However, inlining requires implementation to be visible to the compiler,
1078
* hence be included alongside the header.
1079
* Previously, implementation was hosted inside xxhash.c,
1080
* which was then #included when inlining was activated.
1081
* This construction created issues with a few build and install systems,
1082
* as it required xxhash.c to be stored in /include directory.
1083
*
1084
* xxHash implementation is now directly integrated within xxhash.h.
1085
* As a consequence, xxhash.c is no longer needed in /include.
1086
*
1087
* xxhash.c is still available and is still useful.
1088
* In a "normal" setup, when xxhash is not inlined,
1089
* xxhash.h only exposes the prototypes and public symbols,
1090
* while xxhash.c can be built into an object file xxhash.o
1091
* which can then be linked into the final binary.
1092
************************************************************************/
1093
1094
#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
1095
|| defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
1096
# define XXH_IMPLEM_13a8737387
1097
1098
/* *************************************
1099
* Tuning parameters
1100
***************************************/
1101
1102
/*!
1103
* @defgroup tuning Tuning parameters
1104
* @{
1105
*
1106
* Various macros to control xxHash's behavior.
1107
*/
1108
#ifdef XXH_DOXYGEN
1109
/*!
1110
* @brief Define this to disable 64-bit code.
1111
*
1112
* Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
1113
*/
1114
# define XXH_NO_LONG_LONG
1115
# undef XXH_NO_LONG_LONG /* don't actually */
1116
/*!
1117
* @brief Controls how unaligned memory is accessed.
1118
*
1119
* By default, access to unaligned memory is controlled by `memcpy()`, which is
1120
* safe and portable.
1121
*
1122
* Unfortunately, on some target/compiler combinations, the generated assembly
1123
* is sub-optimal.
1124
*
1125
* The below switch allow selection of a different access method
1126
* in the search for improved performance.
1127
*
1128
* @par Possible options:
1129
*
1130
* - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
1131
* @par
1132
* Use `memcpy()`. Safe and portable. Note that most modern compilers will
1133
* eliminate the function call and treat it as an unaligned access.
1134
*
1135
* - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
1136
* @par
1137
* Depends on compiler extensions and is therefore not portable.
1138
* This method is safe if your compiler supports it, and *generally* as
1139
* fast or faster than `memcpy`.
1140
*
1141
* - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
1142
* @par
1143
* Casts directly and dereferences. This method doesn't depend on the
1144
* compiler, but it violates the C standard as it directly dereferences an
1145
* unaligned pointer. It can generate buggy code on targets which do not
1146
* support unaligned memory accesses, but in some circumstances, it's the
1147
* only known way to get the most performance (example: GCC + ARMv6).
1148
*
1149
* - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
1150
* @par
1151
* Also portable. This can generate the best code on old compilers which don't
1152
* inline small `memcpy()` calls, and it might also be faster on big-endian
1153
* systems which lack a native byteswap instruction. However, some compilers
1154
* will emit literal byteshifts even if the target supports unaligned access.
1155
*
1156
* .
1157
*
1158
* @warning
1159
* Methods 1 and 2 rely on implementation-defined behavior. Use these with
1160
* care, as what works on one compiler/platform/optimization level may cause
1161
* another to read garbage data or even crash.
1162
*
1163
* See https://stackoverflow.com/a/32095106/646947 for details.
1164
*
1165
* Prefer these methods in priority order (0 > 3 > 1 > 2)
1166
*/
1167
# define XXH_FORCE_MEMORY_ACCESS 0
1168
/*!
1169
* @def XXH_ACCEPT_NULL_INPUT_POINTER
1170
* @brief Whether to add explicit `NULL` checks.
1171
*
1172
* If the input pointer is `NULL` and the length is non-zero, xxHash's default
1173
* behavior is to dereference it, triggering a segfault.
1174
*
1175
* When this macro is enabled, xxHash actively checks the input for a null pointer.
1176
* If it is, the result for null input pointers is the same as a zero-length input.
1177
*/
1178
# define XXH_ACCEPT_NULL_INPUT_POINTER 0
1179
/*!
1180
* @def XXH_FORCE_ALIGN_CHECK
1181
* @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
1182
* and XXH64() only).
1183
*
1184
* This is an important performance trick for architectures without decent
1185
* unaligned memory access performance.
1186
*
1187
* It checks for input alignment, and when conditions are met, uses a "fast
1188
* path" employing direct 32-bit/64-bit reads, resulting in _dramatically
1189
* faster_ read speed.
1190
*
1191
* The check costs one initial branch per hash, which is generally negligible,
1192
* but not zero.
1193
*
1194
* Moreover, it's not useful to generate an additional code path if memory
1195
* access uses the same instruction for both aligned and unaligned
1196
* adresses (e.g. x86 and aarch64).
1197
*
1198
* In these cases, the alignment check can be removed by setting this macro to 0.
1199
* Then the code will always use unaligned memory access.
1200
* Align check is automatically disabled on x86, x64 & arm64,
1201
* which are platforms known to offer good unaligned memory accesses performance.
1202
*
1203
* This option does not affect XXH3 (only XXH32 and XXH64).
1204
*/
1205
# define XXH_FORCE_ALIGN_CHECK 0
1206
1207
/*!
1208
* @def XXH_NO_INLINE_HINTS
1209
* @brief When non-zero, sets all functions to `static`.
1210
*
1211
* By default, xxHash tries to force the compiler to inline almost all internal
1212
* functions.
1213
*
1214
* This can usually improve performance due to reduced jumping and improved
1215
* constant folding, but significantly increases the size of the binary which
1216
* might not be favorable.
1217
*
1218
* Additionally, sometimes the forced inlining can be detrimental to performance,
1219
* depending on the architecture.
1220
*
1221
* XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
1222
* compiler full control on whether to inline or not.
1223
*
1224
* When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
1225
* -fno-inline with GCC or Clang, this will automatically be defined.
1226
*/
1227
# define XXH_NO_INLINE_HINTS 0
1228
1229
/*!
1230
* @def XXH_REROLL
1231
* @brief Whether to reroll `XXH32_finalize` and `XXH64_finalize`.
1232
*
1233
* For performance, `XXH32_finalize` and `XXH64_finalize` use an unrolled loop
1234
* in the form of a switch statement.
1235
*
1236
* This is not always desirable, as it generates larger code, and depending on
1237
* the architecture, may even be slower
1238
*
1239
* This is automatically defined with `-Os`/`-Oz` on GCC and Clang.
1240
*/
1241
# define XXH_REROLL 0
1242
1243
/*!
1244
* @internal
1245
* @brief Redefines old internal names.
1246
*
1247
* For compatibility with code that uses xxHash's internals before the names
1248
* were changed to improve namespacing. There is no other reason to use this.
1249
*/
1250
# define XXH_OLD_NAMES
1251
# undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
1252
#endif /* XXH_DOXYGEN */
1253
/*!
1254
* @}
1255
*/
1256
1257
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
1258
# if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
1259
# define XXH_FORCE_MEMORY_ACCESS 2
1260
# elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
1261
(defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
1262
# define XXH_FORCE_MEMORY_ACCESS 1
1263
# endif
1264
#endif
1265
1266
#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
1267
# define XXH_ACCEPT_NULL_INPUT_POINTER 0
1268
#endif
1269
1270
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
1271
# if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
1272
|| defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
1273
# define XXH_FORCE_ALIGN_CHECK 0
1274
# else
1275
# define XXH_FORCE_ALIGN_CHECK 1
1276
# endif
1277
#endif
1278
1279
#ifndef XXH_NO_INLINE_HINTS
1280
# if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
1281
|| defined(__NO_INLINE__) /* -O0, -fno-inline */
1282
# define XXH_NO_INLINE_HINTS 1
1283
# else
1284
# define XXH_NO_INLINE_HINTS 0
1285
# endif
1286
#endif
1287
1288
#ifndef XXH_REROLL
1289
# if defined(__OPTIMIZE_SIZE__)
1290
# define XXH_REROLL 1
1291
# else
1292
# define XXH_REROLL 0
1293
# endif
1294
#endif
1295
1296
/*!
1297
* @defgroup impl Implementation
1298
* @{
1299
*/
1300
1301
1302
/* *************************************
1303
* Includes & Memory related functions
1304
***************************************/
1305
/*
1306
* Modify the local functions below should you wish to use
1307
* different memory routines for malloc() and free()
1308
*/
1309
#include <stdlib.h>
1310
1311
/*!
1312
* @internal
1313
* @brief Modify this function to use a different routine than malloc().
1314
*/
1315
static void* XXH_malloc(size_t s) { return malloc(s); }
1316
1317
/*!
1318
* @internal
1319
* @brief Modify this function to use a different routine than free().
1320
*/
1321
static void XXH_free(void* p) { free(p); }
1322
1323
#include <string.h>
1324
1325
/*!
1326
* @internal
1327
* @brief Modify this function to use a different routine than memcpy().
1328
*/
1329
static void* XXH_memcpy(void* dest, const void* src, size_t size)
1330
{
1331
return memcpy(dest,src,size);
1332
}
1333
1334
#include <limits.h> /* ULLONG_MAX */
1335
1336
1337
/* *************************************
1338
* Compiler Specific Options
1339
***************************************/
1340
#ifdef _MSC_VER /* Visual Studio warning fix */
1341
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
1342
#endif
1343
1344
#if XXH_NO_INLINE_HINTS /* disable inlining hints */
1345
# if defined(__GNUC__)
1346
# define XXH_FORCE_INLINE static __attribute__((unused))
1347
# else
1348
# define XXH_FORCE_INLINE static
1349
# endif
1350
# define XXH_NO_INLINE static
1351
/* enable inlining hints */
1352
#elif defined(_MSC_VER) /* Visual Studio */
1353
# define XXH_FORCE_INLINE static __forceinline
1354
# define XXH_NO_INLINE static __declspec(noinline)
1355
#elif defined(__GNUC__)
1356
# define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
1357
# define XXH_NO_INLINE static __attribute__((noinline))
1358
#elif defined (__cplusplus) \
1359
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
1360
# define XXH_FORCE_INLINE static inline
1361
# define XXH_NO_INLINE static
1362
#else
1363
# define XXH_FORCE_INLINE static
1364
# define XXH_NO_INLINE static
1365
#endif
1366
1367
1368
1369
/* *************************************
1370
* Debug
1371
***************************************/
1372
/*!
1373
* @ingroup tuning
1374
* @def XXH_DEBUGLEVEL
1375
* @brief Sets the debugging level.
1376
*
1377
* XXH_DEBUGLEVEL is expected to be defined externally, typically via the
1378
* compiler's command line options. The value must be a number.
1379
*/
1380
#ifndef XXH_DEBUGLEVEL
1381
# ifdef DEBUGLEVEL /* backwards compat */
1382
# define XXH_DEBUGLEVEL DEBUGLEVEL
1383
# else
1384
# define XXH_DEBUGLEVEL 0
1385
# endif
1386
#endif
1387
1388
#if (XXH_DEBUGLEVEL>=1)
1389
# include <assert.h> /* note: can still be disabled with NDEBUG */
1390
# define XXH_ASSERT(c) assert(c)
1391
#else
1392
# define XXH_ASSERT(c) ((void)0)
1393
#endif
1394
1395
/* note: use after variable declarations */
1396
#define XXH_STATIC_ASSERT(c) do { enum { XXH_sa = 1/(int)(!!(c)) }; } while (0)
1397
1398
1399
/* *************************************
1400
* Basic Types
1401
***************************************/
1402
#if !defined (__VMS) \
1403
&& (defined (__cplusplus) \
1404
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
1405
# include <stdint.h>
1406
typedef uint8_t xxh_u8;
1407
#else
1408
typedef unsigned char xxh_u8;
1409
#endif
1410
typedef XXH32_hash_t xxh_u32;
1411
1412
#ifdef XXH_OLD_NAMES
1413
# define BYTE xxh_u8
1414
# define U8 xxh_u8
1415
# define U32 xxh_u32
1416
#endif
1417
1418
/* *** Memory access *** */
1419
1420
/*!
1421
* @internal
1422
* @fn xxh_u32 XXH_read32(const void* ptr)
1423
* @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
1424
*
1425
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1426
*
1427
* @param ptr The pointer to read from.
1428
* @return The 32-bit native endian integer from the bytes at @p ptr.
1429
*/
1430
1431
/*!
1432
* @internal
1433
* @fn xxh_u32 XXH_readLE32(const void* ptr)
1434
* @brief Reads an unaligned 32-bit little endian integer from @p ptr.
1435
*
1436
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1437
*
1438
* @param ptr The pointer to read from.
1439
* @return The 32-bit little endian integer from the bytes at @p ptr.
1440
*/
1441
1442
/*!
1443
* @internal
1444
* @fn xxh_u32 XXH_readBE32(const void* ptr)
1445
* @brief Reads an unaligned 32-bit big endian integer from @p ptr.
1446
*
1447
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1448
*
1449
* @param ptr The pointer to read from.
1450
* @return The 32-bit big endian integer from the bytes at @p ptr.
1451
*/
1452
1453
/*!
1454
* @internal
1455
* @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1456
* @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
1457
*
1458
* Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1459
* Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
1460
* always @ref XXH_alignment::XXH_unaligned.
1461
*
1462
* @param ptr The pointer to read from.
1463
* @param align Whether @p ptr is aligned.
1464
* @pre
1465
* If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
1466
* aligned.
1467
* @return The 32-bit little endian integer from the bytes at @p ptr.
1468
*/
1469
1470
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1471
/*
1472
* Manual byteshift. Best for old compilers which don't inline memcpy.
1473
* We actually directly use XXH_readLE32 and XXH_readBE32.
1474
*/
1475
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1476
1477
/*
1478
* Force direct memory access. Only works on CPU which support unaligned memory
1479
* access in hardware.
1480
*/
1481
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1482
1483
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1484
1485
/*
1486
* __pack instructions are safer but compiler specific, hence potentially
1487
* problematic for some compilers.
1488
*
1489
* Currently only defined for GCC and ICC.
1490
*/
1491
#ifdef XXH_OLD_NAMES
1492
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1493
#endif
1494
static xxh_u32 XXH_read32(const void* ptr)
1495
{
1496
typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1497
return ((const xxh_unalign*)ptr)->u32;
1498
}
1499
1500
#else
1501
1502
/*
1503
* Portable and safe solution. Generally efficient.
1504
* see: https://stackoverflow.com/a/32095106/646947
1505
*/
1506
static xxh_u32 XXH_read32(const void* memPtr)
1507
{
1508
xxh_u32 val;
1509
memcpy(&val, memPtr, sizeof(val));
1510
return val;
1511
}
1512
1513
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1514
1515
1516
/* *** Endianess *** */
1517
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
1518
1519
/*!
1520
* @ingroup tuning
1521
* @def XXH_CPU_LITTLE_ENDIAN
1522
* @brief Whether the target is little endian.
1523
*
1524
* Defined to 1 if the target is little endian, or 0 if it is big endian.
1525
* It can be defined externally, for example on the compiler command line.
1526
*
1527
* If it is not defined, a runtime check (which is usually constant folded)
1528
* is used instead.
1529
*
1530
* @note
1531
* This is not necessarily defined to an integer constant.
1532
*
1533
* @see XXH_isLittleEndian() for the runtime check.
1534
*/
1535
#ifndef XXH_CPU_LITTLE_ENDIAN
1536
/*
1537
* Try to detect endianness automatically, to avoid the nonstandard behavior
1538
* in `XXH_isLittleEndian()`
1539
*/
1540
# if defined(_WIN32) /* Windows is always little endian */ \
1541
|| defined(__LITTLE_ENDIAN__) \
1542
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1543
# define XXH_CPU_LITTLE_ENDIAN 1
1544
# elif defined(__BIG_ENDIAN__) \
1545
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1546
# define XXH_CPU_LITTLE_ENDIAN 0
1547
# else
1548
/*!
1549
* @internal
1550
* @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
1551
*
1552
* Most compilers will constant fold this.
1553
*/
1554
static int XXH_isLittleEndian(void)
1555
{
1556
/*
1557
* Portable and well-defined behavior.
1558
* Don't use static: it is detrimental to performance.
1559
*/
1560
const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1561
return one.c[0];
1562
}
1563
# define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
1564
# endif
1565
#endif
1566
1567
1568
1569
1570
/* ****************************************
1571
* Compiler-specific Functions and Macros
1572
******************************************/
1573
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1574
1575
#ifdef __has_builtin
1576
# define XXH_HAS_BUILTIN(x) __has_builtin(x)
1577
#else
1578
# define XXH_HAS_BUILTIN(x) 0
1579
#endif
1580
1581
/*!
1582
* @internal
1583
* @def XXH_rotl32(x,r)
1584
* @brief 32-bit rotate left.
1585
*
1586
* @param x The 32-bit integer to be rotated.
1587
* @param r The number of bits to rotate.
1588
* @pre
1589
* @p r > 0 && @p r < 32
1590
* @note
1591
* @p x and @p r may be evaluated multiple times.
1592
* @return The rotated result.
1593
*/
1594
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1595
&& XXH_HAS_BUILTIN(__builtin_rotateleft64)
1596
# define XXH_rotl32 __builtin_rotateleft32
1597
# define XXH_rotl64 __builtin_rotateleft64
1598
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1599
#elif defined(_MSC_VER)
1600
# define XXH_rotl32(x,r) _rotl(x,r)
1601
# define XXH_rotl64(x,r) _rotl64(x,r)
1602
#else
1603
# define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1604
# define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1605
#endif
1606
1607
/*!
1608
* @internal
1609
* @fn xxh_u32 XXH_swap32(xxh_u32 x)
1610
* @brief A 32-bit byteswap.
1611
*
1612
* @param x The 32-bit integer to byteswap.
1613
* @return @p x, byteswapped.
1614
*/
1615
#if defined(_MSC_VER) /* Visual Studio */
1616
# define XXH_swap32 _byteswap_ulong
1617
#elif XXH_GCC_VERSION >= 403
1618
# define XXH_swap32 __builtin_bswap32
1619
#else
1620
static xxh_u32 XXH_swap32 (xxh_u32 x)
1621
{
1622
return ((x << 24) & 0xff000000 ) |
1623
((x << 8) & 0x00ff0000 ) |
1624
((x >> 8) & 0x0000ff00 ) |
1625
((x >> 24) & 0x000000ff );
1626
}
1627
#endif
1628
1629
1630
/* ***************************
1631
* Memory reads
1632
*****************************/
1633
1634
/*!
1635
* @internal
1636
* @brief Enum to indicate whether a pointer is aligned.
1637
*/
1638
typedef enum {
1639
XXH_aligned, /*!< Aligned */
1640
XXH_unaligned /*!< Possibly unaligned */
1641
} XXH_alignment;
1642
1643
/*
1644
* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1645
*
1646
* This is ideal for older compilers which don't inline memcpy.
1647
*/
1648
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1649
1650
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1651
{
1652
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1653
return bytePtr[0]
1654
| ((xxh_u32)bytePtr[1] << 8)
1655
| ((xxh_u32)bytePtr[2] << 16)
1656
| ((xxh_u32)bytePtr[3] << 24);
1657
}
1658
1659
XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1660
{
1661
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1662
return bytePtr[3]
1663
| ((xxh_u32)bytePtr[2] << 8)
1664
| ((xxh_u32)bytePtr[1] << 16)
1665
| ((xxh_u32)bytePtr[0] << 24);
1666
}
1667
1668
#else
1669
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1670
{
1671
return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1672
}
1673
1674
static xxh_u32 XXH_readBE32(const void* ptr)
1675
{
1676
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1677
}
1678
#endif
1679
1680
XXH_FORCE_INLINE xxh_u32
1681
XXH_readLE32_align(const void* ptr, XXH_alignment align)
1682
{
1683
if (align==XXH_unaligned) {
1684
return XXH_readLE32(ptr);
1685
} else {
1686
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1687
}
1688
}
1689
1690
1691
/* *************************************
1692
* Misc
1693
***************************************/
1694
/*! @ingroup public */
1695
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1696
1697
1698
/* *******************************************************************
1699
* 32-bit hash functions
1700
*********************************************************************/
1701
/*!
1702
* @}
1703
* @defgroup xxh32_impl XXH32 implementation
1704
* @ingroup impl
1705
* @{
1706
*/
1707
static const xxh_u32 XXH_PRIME32_1 = 0x9E3779B1U; /*!< 0b10011110001101110111100110110001 */
1708
static const xxh_u32 XXH_PRIME32_2 = 0x85EBCA77U; /*!< 0b10000101111010111100101001110111 */
1709
static const xxh_u32 XXH_PRIME32_3 = 0xC2B2AE3DU; /*!< 0b11000010101100101010111000111101 */
1710
static const xxh_u32 XXH_PRIME32_4 = 0x27D4EB2FU; /*!< 0b00100111110101001110101100101111 */
1711
static const xxh_u32 XXH_PRIME32_5 = 0x165667B1U; /*!< 0b00010110010101100110011110110001 */
1712
1713
#ifdef XXH_OLD_NAMES
1714
# define PRIME32_1 XXH_PRIME32_1
1715
# define PRIME32_2 XXH_PRIME32_2
1716
# define PRIME32_3 XXH_PRIME32_3
1717
# define PRIME32_4 XXH_PRIME32_4
1718
# define PRIME32_5 XXH_PRIME32_5
1719
#endif
1720
1721
/*!
1722
* @internal
1723
* @brief Normal stripe processing routine.
1724
*
1725
* This shuffles the bits so that any bit from @p input impacts several bits in
1726
* @p acc.
1727
*
1728
* @param acc The accumulator lane.
1729
* @param input The stripe of input to mix.
1730
* @return The mixed accumulator lane.
1731
*/
1732
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1733
{
1734
acc += input * XXH_PRIME32_2;
1735
acc = XXH_rotl32(acc, 13);
1736
acc *= XXH_PRIME32_1;
1737
#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1738
/*
1739
* UGLY HACK:
1740
* This inline assembly hack forces acc into a normal register. This is the
1741
* only thing that prevents GCC and Clang from autovectorizing the XXH32
1742
* loop (pragmas and attributes don't work for some resason) without globally
1743
* disabling SSE4.1.
1744
*
1745
* The reason we want to avoid vectorization is because despite working on
1746
* 4 integers at a time, there are multiple factors slowing XXH32 down on
1747
* SSE4:
1748
* - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1749
* newer chips!) making it slightly slower to multiply four integers at
1750
* once compared to four integers independently. Even when pmulld was
1751
* fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1752
* just to multiply unless doing a long operation.
1753
*
1754
* - Four instructions are required to rotate,
1755
* movqda tmp, v // not required with VEX encoding
1756
* pslld tmp, 13 // tmp <<= 13
1757
* psrld v, 19 // x >>= 19
1758
* por v, tmp // x |= tmp
1759
* compared to one for scalar:
1760
* roll v, 13 // reliably fast across the board
1761
* shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
1762
*
1763
* - Instruction level parallelism is actually more beneficial here because
1764
* the SIMD actually serializes this operation: While v1 is rotating, v2
1765
* can load data, while v3 can multiply. SSE forces them to operate
1766
* together.
1767
*
1768
* How this hack works:
1769
* __asm__("" // Declare an assembly block but don't declare any instructions
1770
* : // However, as an Input/Output Operand,
1771
* "+r" // constrain a read/write operand (+) as a general purpose register (r).
1772
* (acc) // and set acc as the operand
1773
* );
1774
*
1775
* Because of the 'r', the compiler has promised that seed will be in a
1776
* general purpose register and the '+' says that it will be 'read/write',
1777
* so it has to assume it has changed. It is like volatile without all the
1778
* loads and stores.
1779
*
1780
* Since the argument has to be in a normal register (not an SSE register),
1781
* each time XXH32_round is called, it is impossible to vectorize.
1782
*/
1783
__asm__("" : "+r" (acc));
1784
#endif
1785
return acc;
1786
}
1787
1788
/*!
1789
* @internal
1790
* @brief Mixes all bits to finalize the hash.
1791
*
1792
* The final mix ensures that all input bits have a chance to impact any bit in
1793
* the output digest, resulting in an unbiased distribution.
1794
*
1795
* @param h32 The hash to avalanche.
1796
* @return The avalanched hash.
1797
*/
1798
static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1799
{
1800
h32 ^= h32 >> 15;
1801
h32 *= XXH_PRIME32_2;
1802
h32 ^= h32 >> 13;
1803
h32 *= XXH_PRIME32_3;
1804
h32 ^= h32 >> 16;
1805
return(h32);
1806
}
1807
1808
#define XXH_get32bits(p) XXH_readLE32_align(p, align)
1809
1810
/*!
1811
* @internal
1812
* @brief Processes the last 0-15 bytes of @p ptr.
1813
*
1814
* There may be up to 15 bytes remaining to consume from the input.
1815
* This final stage will digest them to ensure that all input bytes are present
1816
* in the final mix.
1817
*
1818
* @param h32 The hash to finalize.
1819
* @param ptr The pointer to the remaining input.
1820
* @param len The remaining length, modulo 16.
1821
* @param align Whether @p ptr is aligned.
1822
* @return The finalized hash.
1823
*/
1824
static xxh_u32
1825
XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1826
{
1827
#define XXH_PROCESS1 do { \
1828
h32 += (*ptr++) * XXH_PRIME32_5; \
1829
h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \
1830
} while (0)
1831
1832
#define XXH_PROCESS4 do { \
1833
h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \
1834
ptr += 4; \
1835
h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
1836
} while (0)
1837
1838
/* Compact rerolled version */
1839
if (XXH_REROLL) {
1840
len &= 15;
1841
while (len >= 4) {
1842
XXH_PROCESS4;
1843
len -= 4;
1844
}
1845
while (len > 0) {
1846
XXH_PROCESS1;
1847
--len;
1848
}
1849
return XXH32_avalanche(h32);
1850
} else {
1851
switch(len&15) /* or switch(bEnd - p) */ {
1852
case 12: XXH_PROCESS4;
1853
/* fallthrough */
1854
case 8: XXH_PROCESS4;
1855
/* fallthrough */
1856
case 4: XXH_PROCESS4;
1857
return XXH32_avalanche(h32);
1858
1859
case 13: XXH_PROCESS4;
1860
/* fallthrough */
1861
case 9: XXH_PROCESS4;
1862
/* fallthrough */
1863
case 5: XXH_PROCESS4;
1864
XXH_PROCESS1;
1865
return XXH32_avalanche(h32);
1866
1867
case 14: XXH_PROCESS4;
1868
/* fallthrough */
1869
case 10: XXH_PROCESS4;
1870
/* fallthrough */
1871
case 6: XXH_PROCESS4;
1872
XXH_PROCESS1;
1873
XXH_PROCESS1;
1874
return XXH32_avalanche(h32);
1875
1876
case 15: XXH_PROCESS4;
1877
/* fallthrough */
1878
case 11: XXH_PROCESS4;
1879
/* fallthrough */
1880
case 7: XXH_PROCESS4;
1881
/* fallthrough */
1882
case 3: XXH_PROCESS1;
1883
/* fallthrough */
1884
case 2: XXH_PROCESS1;
1885
/* fallthrough */
1886
case 1: XXH_PROCESS1;
1887
/* fallthrough */
1888
case 0: return XXH32_avalanche(h32);
1889
}
1890
XXH_ASSERT(0);
1891
return h32; /* reaching this point is deemed impossible */
1892
}
1893
}
1894
1895
#ifdef XXH_OLD_NAMES
1896
# define PROCESS1 XXH_PROCESS1
1897
# define PROCESS4 XXH_PROCESS4
1898
#else
1899
# undef XXH_PROCESS1
1900
# undef XXH_PROCESS4
1901
#endif
1902
1903
/*!
1904
* @internal
1905
* @brief The implementation for @ref XXH32().
1906
*
1907
* @param input, len, seed Directly passed from @ref XXH32().
1908
* @param align Whether @p input is aligned.
1909
* @return The calculated hash.
1910
*/
1911
XXH_FORCE_INLINE xxh_u32
1912
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
1913
{
1914
const xxh_u8* bEnd = input + len;
1915
xxh_u32 h32;
1916
1917
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
1918
if (input==NULL) {
1919
len=0;
1920
bEnd=input=(const xxh_u8*)(size_t)16;
1921
}
1922
#endif
1923
1924
if (len>=16) {
1925
const xxh_u8* const limit = bEnd - 15;
1926
xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1927
xxh_u32 v2 = seed + XXH_PRIME32_2;
1928
xxh_u32 v3 = seed + 0;
1929
xxh_u32 v4 = seed - XXH_PRIME32_1;
1930
1931
do {
1932
v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
1933
v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
1934
v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
1935
v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
1936
} while (input < limit);
1937
1938
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
1939
+ XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
1940
} else {
1941
h32 = seed + XXH_PRIME32_5;
1942
}
1943
1944
h32 += (xxh_u32)len;
1945
1946
return XXH32_finalize(h32, input, len&15, align);
1947
}
1948
1949
/*! @ingroup xxh32_family */
1950
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
1951
{
1952
#if 0
1953
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
1954
XXH32_state_t state;
1955
XXH32_reset(&state, seed);
1956
XXH32_update(&state, (const xxh_u8*)input, len);
1957
return XXH32_digest(&state);
1958
#else
1959
if (XXH_FORCE_ALIGN_CHECK) {
1960
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
1961
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
1962
} }
1963
1964
return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
1965
#endif
1966
}
1967
1968
1969
1970
/******* Hash streaming *******/
1971
/*!
1972
* @ingroup xxh32_family
1973
*/
1974
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
1975
{
1976
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
1977
}
1978
/*! @ingroup xxh32_family */
1979
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
1980
{
1981
XXH_free(statePtr);
1982
return XXH_OK;
1983
}
1984
1985
/*! @ingroup xxh32_family */
1986
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
1987
{
1988
memcpy(dstState, srcState, sizeof(*dstState));
1989
}
1990
1991
/*! @ingroup xxh32_family */
1992
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
1993
{
1994
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
1995
memset(&state, 0, sizeof(state));
1996
state.v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
1997
state.v2 = seed + XXH_PRIME32_2;
1998
state.v3 = seed + 0;
1999
state.v4 = seed - XXH_PRIME32_1;
2000
/* do not write into reserved, planned to be removed in a future version */
2001
memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
2002
return XXH_OK;
2003
}
2004
2005
2006
/*! @ingroup xxh32_family */
2007
XXH_PUBLIC_API XXH_errorcode
2008
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
2009
{
2010
if (input==NULL)
2011
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2012
return XXH_OK;
2013
#else
2014
return XXH_ERROR;
2015
#endif
2016
2017
{ const xxh_u8* p = (const xxh_u8*)input;
2018
const xxh_u8* const bEnd = p + len;
2019
2020
state->total_len_32 += (XXH32_hash_t)len;
2021
state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
2022
2023
if (state->memsize + len < 16) { /* fill in tmp buffer */
2024
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
2025
state->memsize += (XXH32_hash_t)len;
2026
return XXH_OK;
2027
}
2028
2029
if (state->memsize) { /* some data left from previous update */
2030
XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
2031
{ const xxh_u32* p32 = state->mem32;
2032
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
2033
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
2034
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
2035
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
2036
}
2037
p += 16-state->memsize;
2038
state->memsize = 0;
2039
}
2040
2041
if (p <= bEnd-16) {
2042
const xxh_u8* const limit = bEnd - 16;
2043
xxh_u32 v1 = state->v1;
2044
xxh_u32 v2 = state->v2;
2045
xxh_u32 v3 = state->v3;
2046
xxh_u32 v4 = state->v4;
2047
2048
do {
2049
v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
2050
v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
2051
v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
2052
v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
2053
} while (p<=limit);
2054
2055
state->v1 = v1;
2056
state->v2 = v2;
2057
state->v3 = v3;
2058
state->v4 = v4;
2059
}
2060
2061
if (p < bEnd) {
2062
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
2063
state->memsize = (unsigned)(bEnd-p);
2064
}
2065
}
2066
2067
return XXH_OK;
2068
}
2069
2070
2071
/*! @ingroup xxh32_family */
2072
XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
2073
{
2074
xxh_u32 h32;
2075
2076
if (state->large_len) {
2077
h32 = XXH_rotl32(state->v1, 1)
2078
+ XXH_rotl32(state->v2, 7)
2079
+ XXH_rotl32(state->v3, 12)
2080
+ XXH_rotl32(state->v4, 18);
2081
} else {
2082
h32 = state->v3 /* == seed */ + XXH_PRIME32_5;
2083
}
2084
2085
h32 += state->total_len_32;
2086
2087
return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
2088
}
2089
2090
2091
/******* Canonical representation *******/
2092
2093
/*!
2094
* @ingroup xxh32_family
2095
* The default return values from XXH functions are unsigned 32 and 64 bit
2096
* integers.
2097
*
2098
* The canonical representation uses big endian convention, the same convention
2099
* as human-readable numbers (large digits first).
2100
*
2101
* This way, hash values can be written into a file or buffer, remaining
2102
* comparable across different systems.
2103
*
2104
* The following functions allow transformation of hash values to and from their
2105
* canonical format.
2106
*/
2107
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
2108
{
2109
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
2110
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
2111
memcpy(dst, &hash, sizeof(*dst));
2112
}
2113
/*! @ingroup xxh32_family */
2114
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
2115
{
2116
return XXH_readBE32(src);
2117
}
2118
2119
2120
#ifndef XXH_NO_LONG_LONG
2121
2122
/* *******************************************************************
2123
* 64-bit hash functions
2124
*********************************************************************/
2125
/*!
2126
* @}
2127
* @ingroup impl
2128
* @{
2129
*/
2130
/******* Memory access *******/
2131
2132
typedef XXH64_hash_t xxh_u64;
2133
2134
#ifdef XXH_OLD_NAMES
2135
# define U64 xxh_u64
2136
#endif
2137
2138
/*!
2139
* XXH_REROLL_XXH64:
2140
* Whether to reroll the XXH64_finalize() loop.
2141
*
2142
* Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
2143
* performance gain on 64-bit hosts, as only one jump is required.
2144
*
2145
* However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
2146
* registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
2147
* to unroll. The code becomes ridiculously large (the largest function in the
2148
* binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
2149
* also slightly faster because it fits into cache better and is more likely
2150
* to be inlined by the compiler.
2151
*
2152
* If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
2153
*/
2154
#ifndef XXH_REROLL_XXH64
2155
# if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
2156
|| !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
2157
|| defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
2158
|| defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
2159
|| defined(__mips64__) || defined(__mips64)) /* mips64 */ \
2160
|| (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
2161
# define XXH_REROLL_XXH64 1
2162
# else
2163
# define XXH_REROLL_XXH64 0
2164
# endif
2165
#endif /* !defined(XXH_REROLL_XXH64) */
2166
2167
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2168
/*
2169
* Manual byteshift. Best for old compilers which don't inline memcpy.
2170
* We actually directly use XXH_readLE64 and XXH_readBE64.
2171
*/
2172
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2173
2174
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
2175
static xxh_u64 XXH_read64(const void* memPtr)
2176
{
2177
return *(const xxh_u64*) memPtr;
2178
}
2179
2180
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2181
2182
/*
2183
* __pack instructions are safer, but compiler specific, hence potentially
2184
* problematic for some compilers.
2185
*
2186
* Currently only defined for GCC and ICC.
2187
*/
2188
#ifdef XXH_OLD_NAMES
2189
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
2190
#endif
2191
static xxh_u64 XXH_read64(const void* ptr)
2192
{
2193
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
2194
return ((const xxh_unalign64*)ptr)->u64;
2195
}
2196
2197
#else
2198
2199
/*
2200
* Portable and safe solution. Generally efficient.
2201
* see: https://stackoverflow.com/a/32095106/646947
2202
*/
2203
static xxh_u64 XXH_read64(const void* memPtr)
2204
{
2205
xxh_u64 val;
2206
memcpy(&val, memPtr, sizeof(val));
2207
return val;
2208
}
2209
2210
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2211
2212
#if defined(_MSC_VER) /* Visual Studio */
2213
# define XXH_swap64 _byteswap_uint64
2214
#elif XXH_GCC_VERSION >= 403
2215
# define XXH_swap64 __builtin_bswap64
2216
#else
2217
static xxh_u64 XXH_swap64(xxh_u64 x)
2218
{
2219
return ((x << 56) & 0xff00000000000000ULL) |
2220
((x << 40) & 0x00ff000000000000ULL) |
2221
((x << 24) & 0x0000ff0000000000ULL) |
2222
((x << 8) & 0x000000ff00000000ULL) |
2223
((x >> 8) & 0x00000000ff000000ULL) |
2224
((x >> 24) & 0x0000000000ff0000ULL) |
2225
((x >> 40) & 0x000000000000ff00ULL) |
2226
((x >> 56) & 0x00000000000000ffULL);
2227
}
2228
#endif
2229
2230
2231
/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
2232
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2233
2234
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
2235
{
2236
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2237
return bytePtr[0]
2238
| ((xxh_u64)bytePtr[1] << 8)
2239
| ((xxh_u64)bytePtr[2] << 16)
2240
| ((xxh_u64)bytePtr[3] << 24)
2241
| ((xxh_u64)bytePtr[4] << 32)
2242
| ((xxh_u64)bytePtr[5] << 40)
2243
| ((xxh_u64)bytePtr[6] << 48)
2244
| ((xxh_u64)bytePtr[7] << 56);
2245
}
2246
2247
XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
2248
{
2249
const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2250
return bytePtr[7]
2251
| ((xxh_u64)bytePtr[6] << 8)
2252
| ((xxh_u64)bytePtr[5] << 16)
2253
| ((xxh_u64)bytePtr[4] << 24)
2254
| ((xxh_u64)bytePtr[3] << 32)
2255
| ((xxh_u64)bytePtr[2] << 40)
2256
| ((xxh_u64)bytePtr[1] << 48)
2257
| ((xxh_u64)bytePtr[0] << 56);
2258
}
2259
2260
#else
2261
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
2262
{
2263
return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
2264
}
2265
2266
static xxh_u64 XXH_readBE64(const void* ptr)
2267
{
2268
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
2269
}
2270
#endif
2271
2272
XXH_FORCE_INLINE xxh_u64
2273
XXH_readLE64_align(const void* ptr, XXH_alignment align)
2274
{
2275
if (align==XXH_unaligned)
2276
return XXH_readLE64(ptr);
2277
else
2278
return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
2279
}
2280
2281
2282
/******* xxh64 *******/
2283
/*!
2284
* @}
2285
* @defgroup xxh64_impl XXH64 implementation
2286
* @ingroup impl
2287
* @{
2288
*/
2289
static const xxh_u64 XXH_PRIME64_1 = 0x9E3779B185EBCA87ULL; /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
2290
static const xxh_u64 XXH_PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
2291
static const xxh_u64 XXH_PRIME64_3 = 0x165667B19E3779F9ULL; /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
2292
static const xxh_u64 XXH_PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
2293
static const xxh_u64 XXH_PRIME64_5 = 0x27D4EB2F165667C5ULL; /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
2294
2295
#ifdef XXH_OLD_NAMES
2296
# define PRIME64_1 XXH_PRIME64_1
2297
# define PRIME64_2 XXH_PRIME64_2
2298
# define PRIME64_3 XXH_PRIME64_3
2299
# define PRIME64_4 XXH_PRIME64_4
2300
# define PRIME64_5 XXH_PRIME64_5
2301
#endif
2302
2303
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
2304
{
2305
acc += input * XXH_PRIME64_2;
2306
acc = XXH_rotl64(acc, 31);
2307
acc *= XXH_PRIME64_1;
2308
return acc;
2309
}
2310
2311
static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
2312
{
2313
val = XXH64_round(0, val);
2314
acc ^= val;
2315
acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
2316
return acc;
2317
}
2318
2319
static xxh_u64 XXH64_avalanche(xxh_u64 h64)
2320
{
2321
h64 ^= h64 >> 33;
2322
h64 *= XXH_PRIME64_2;
2323
h64 ^= h64 >> 29;
2324
h64 *= XXH_PRIME64_3;
2325
h64 ^= h64 >> 32;
2326
return h64;
2327
}
2328
2329
2330
#define XXH_get64bits(p) XXH_readLE64_align(p, align)
2331
2332
static xxh_u64
2333
XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
2334
{
2335
#define XXH_PROCESS1_64 do { \
2336
h64 ^= (*ptr++) * XXH_PRIME64_5; \
2337
h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1; \
2338
} while (0)
2339
2340
#define XXH_PROCESS4_64 do { \
2341
h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1; \
2342
ptr += 4; \
2343
h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3; \
2344
} while (0)
2345
2346
#define XXH_PROCESS8_64 do { \
2347
xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
2348
ptr += 8; \
2349
h64 ^= k1; \
2350
h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4; \
2351
} while (0)
2352
2353
/* Rerolled version for 32-bit targets is faster and much smaller. */
2354
if (XXH_REROLL || XXH_REROLL_XXH64) {
2355
len &= 31;
2356
while (len >= 8) {
2357
XXH_PROCESS8_64;
2358
len -= 8;
2359
}
2360
if (len >= 4) {
2361
XXH_PROCESS4_64;
2362
len -= 4;
2363
}
2364
while (len > 0) {
2365
XXH_PROCESS1_64;
2366
--len;
2367
}
2368
return XXH64_avalanche(h64);
2369
} else {
2370
switch(len & 31) {
2371
case 24: XXH_PROCESS8_64;
2372
/* fallthrough */
2373
case 16: XXH_PROCESS8_64;
2374
/* fallthrough */
2375
case 8: XXH_PROCESS8_64;
2376
return XXH64_avalanche(h64);
2377
2378
case 28: XXH_PROCESS8_64;
2379
/* fallthrough */
2380
case 20: XXH_PROCESS8_64;
2381
/* fallthrough */
2382
case 12: XXH_PROCESS8_64;
2383
/* fallthrough */
2384
case 4: XXH_PROCESS4_64;
2385
return XXH64_avalanche(h64);
2386
2387
case 25: XXH_PROCESS8_64;
2388
/* fallthrough */
2389
case 17: XXH_PROCESS8_64;
2390
/* fallthrough */
2391
case 9: XXH_PROCESS8_64;
2392
XXH_PROCESS1_64;
2393
return XXH64_avalanche(h64);
2394
2395
case 29: XXH_PROCESS8_64;
2396
/* fallthrough */
2397
case 21: XXH_PROCESS8_64;
2398
/* fallthrough */
2399
case 13: XXH_PROCESS8_64;
2400
/* fallthrough */
2401
case 5: XXH_PROCESS4_64;
2402
XXH_PROCESS1_64;
2403
return XXH64_avalanche(h64);
2404
2405
case 26: XXH_PROCESS8_64;
2406
/* fallthrough */
2407
case 18: XXH_PROCESS8_64;
2408
/* fallthrough */
2409
case 10: XXH_PROCESS8_64;
2410
XXH_PROCESS1_64;
2411
XXH_PROCESS1_64;
2412
return XXH64_avalanche(h64);
2413
2414
case 30: XXH_PROCESS8_64;
2415
/* fallthrough */
2416
case 22: XXH_PROCESS8_64;
2417
/* fallthrough */
2418
case 14: XXH_PROCESS8_64;
2419
/* fallthrough */
2420
case 6: XXH_PROCESS4_64;
2421
XXH_PROCESS1_64;
2422
XXH_PROCESS1_64;
2423
return XXH64_avalanche(h64);
2424
2425
case 27: XXH_PROCESS8_64;
2426
/* fallthrough */
2427
case 19: XXH_PROCESS8_64;
2428
/* fallthrough */
2429
case 11: XXH_PROCESS8_64;
2430
XXH_PROCESS1_64;
2431
XXH_PROCESS1_64;
2432
XXH_PROCESS1_64;
2433
return XXH64_avalanche(h64);
2434
2435
case 31: XXH_PROCESS8_64;
2436
/* fallthrough */
2437
case 23: XXH_PROCESS8_64;
2438
/* fallthrough */
2439
case 15: XXH_PROCESS8_64;
2440
/* fallthrough */
2441
case 7: XXH_PROCESS4_64;
2442
/* fallthrough */
2443
case 3: XXH_PROCESS1_64;
2444
/* fallthrough */
2445
case 2: XXH_PROCESS1_64;
2446
/* fallthrough */
2447
case 1: XXH_PROCESS1_64;
2448
/* fallthrough */
2449
case 0: return XXH64_avalanche(h64);
2450
}
2451
}
2452
/* impossible to reach */
2453
XXH_ASSERT(0);
2454
return 0; /* unreachable, but some compilers complain without it */
2455
}
2456
2457
#ifdef XXH_OLD_NAMES
2458
# define PROCESS1_64 XXH_PROCESS1_64
2459
# define PROCESS4_64 XXH_PROCESS4_64
2460
# define PROCESS8_64 XXH_PROCESS8_64
2461
#else
2462
# undef XXH_PROCESS1_64
2463
# undef XXH_PROCESS4_64
2464
# undef XXH_PROCESS8_64
2465
#endif
2466
2467
XXH_FORCE_INLINE xxh_u64
2468
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
2469
{
2470
const xxh_u8* bEnd = input + len;
2471
xxh_u64 h64;
2472
2473
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2474
if (input==NULL) {
2475
len=0;
2476
bEnd=input=(const xxh_u8*)(size_t)32;
2477
}
2478
#endif
2479
2480
if (len>=32) {
2481
const xxh_u8* const limit = bEnd - 32;
2482
xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2483
xxh_u64 v2 = seed + XXH_PRIME64_2;
2484
xxh_u64 v3 = seed + 0;
2485
xxh_u64 v4 = seed - XXH_PRIME64_1;
2486
2487
do {
2488
v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
2489
v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
2490
v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
2491
v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
2492
} while (input<=limit);
2493
2494
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2495
h64 = XXH64_mergeRound(h64, v1);
2496
h64 = XXH64_mergeRound(h64, v2);
2497
h64 = XXH64_mergeRound(h64, v3);
2498
h64 = XXH64_mergeRound(h64, v4);
2499
2500
} else {
2501
h64 = seed + XXH_PRIME64_5;
2502
}
2503
2504
h64 += (xxh_u64) len;
2505
2506
return XXH64_finalize(h64, input, len, align);
2507
}
2508
2509
2510
/*! @ingroup xxh64_family */
2511
XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
2512
{
2513
#if 0
2514
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2515
XXH64_state_t state;
2516
XXH64_reset(&state, seed);
2517
XXH64_update(&state, (const xxh_u8*)input, len);
2518
return XXH64_digest(&state);
2519
#else
2520
if (XXH_FORCE_ALIGN_CHECK) {
2521
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
2522
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2523
} }
2524
2525
return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2526
2527
#endif
2528
}
2529
2530
/******* Hash Streaming *******/
2531
2532
/*! @ingroup xxh64_family*/
2533
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
2534
{
2535
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
2536
}
2537
/*! @ingroup xxh64_family */
2538
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
2539
{
2540
XXH_free(statePtr);
2541
return XXH_OK;
2542
}
2543
2544
/*! @ingroup xxh64_family */
2545
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
2546
{
2547
memcpy(dstState, srcState, sizeof(*dstState));
2548
}
2549
2550
/*! @ingroup xxh64_family */
2551
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
2552
{
2553
XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
2554
memset(&state, 0, sizeof(state));
2555
state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2556
state.v2 = seed + XXH_PRIME64_2;
2557
state.v3 = seed + 0;
2558
state.v4 = seed - XXH_PRIME64_1;
2559
/* do not write into reserved64, might be removed in a future version */
2560
memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
2561
return XXH_OK;
2562
}
2563
2564
/*! @ingroup xxh64_family */
2565
XXH_PUBLIC_API XXH_errorcode
2566
XXH64_update (XXH64_state_t* state, const void* input, size_t len)
2567
{
2568
if (input==NULL)
2569
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
2570
return XXH_OK;
2571
#else
2572
return XXH_ERROR;
2573
#endif
2574
2575
{ const xxh_u8* p = (const xxh_u8*)input;
2576
const xxh_u8* const bEnd = p + len;
2577
2578
state->total_len += len;
2579
2580
if (state->memsize + len < 32) { /* fill in tmp buffer */
2581
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2582
state->memsize += (xxh_u32)len;
2583
return XXH_OK;
2584
}
2585
2586
if (state->memsize) { /* tmp buffer is full */
2587
XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2588
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
2589
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
2590
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
2591
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
2592
p += 32 - state->memsize;
2593
state->memsize = 0;
2594
}
2595
2596
if (p+32 <= bEnd) {
2597
const xxh_u8* const limit = bEnd - 32;
2598
xxh_u64 v1 = state->v1;
2599
xxh_u64 v2 = state->v2;
2600
xxh_u64 v3 = state->v3;
2601
xxh_u64 v4 = state->v4;
2602
2603
do {
2604
v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
2605
v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
2606
v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
2607
v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
2608
} while (p<=limit);
2609
2610
state->v1 = v1;
2611
state->v2 = v2;
2612
state->v3 = v3;
2613
state->v4 = v4;
2614
}
2615
2616
if (p < bEnd) {
2617
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2618
state->memsize = (unsigned)(bEnd-p);
2619
}
2620
}
2621
2622
return XXH_OK;
2623
}
2624
2625
2626
/*! @ingroup xxh64_family */
2627
XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
2628
{
2629
xxh_u64 h64;
2630
2631
if (state->total_len >= 32) {
2632
xxh_u64 const v1 = state->v1;
2633
xxh_u64 const v2 = state->v2;
2634
xxh_u64 const v3 = state->v3;
2635
xxh_u64 const v4 = state->v4;
2636
2637
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2638
h64 = XXH64_mergeRound(h64, v1);
2639
h64 = XXH64_mergeRound(h64, v2);
2640
h64 = XXH64_mergeRound(h64, v3);
2641
h64 = XXH64_mergeRound(h64, v4);
2642
} else {
2643
h64 = state->v3 /*seed*/ + XXH_PRIME64_5;
2644
}
2645
2646
h64 += (xxh_u64) state->total_len;
2647
2648
return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2649
}
2650
2651
2652
/******* Canonical representation *******/
2653
2654
/*! @ingroup xxh64_family */
2655
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2656
{
2657
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2658
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2659
memcpy(dst, &hash, sizeof(*dst));
2660
}
2661
2662
/*! @ingroup xxh64_family */
2663
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2664
{
2665
return XXH_readBE64(src);
2666
}
2667
2668
2669
2670
/* *********************************************************************
2671
* XXH3
2672
* New generation hash designed for speed on small keys and vectorization
2673
************************************************************************ */
2674
/*!
2675
* @}
2676
* @defgroup xxh3_impl XXH3 implementation
2677
* @ingroup impl
2678
* @{
2679
*/
2680
2681
/* === Compiler specifics === */
2682
2683
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
2684
# define XXH_RESTRICT restrict
2685
#else
2686
/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2687
# define XXH_RESTRICT /* disable */
2688
#endif
2689
2690
#if (defined(__GNUC__) && (__GNUC__ >= 3)) \
2691
|| (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2692
|| defined(__clang__)
2693
# define XXH_likely(x) __builtin_expect(x, 1)
2694
# define XXH_unlikely(x) __builtin_expect(x, 0)
2695
#else
2696
# define XXH_likely(x) (x)
2697
# define XXH_unlikely(x) (x)
2698
#endif
2699
2700
#if defined(__GNUC__)
2701
# if defined(__AVX2__)
2702
# include <immintrin.h>
2703
# elif defined(__SSE2__)
2704
# include <emmintrin.h>
2705
# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
2706
# define inline __inline__ /* circumvent a clang bug */
2707
# include <arm_neon.h>
2708
# undef inline
2709
# endif
2710
#elif defined(_MSC_VER)
2711
# include <intrin.h>
2712
#endif
2713
2714
/*
2715
* One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2716
* remaining a true 64-bit/128-bit hash function.
2717
*
2718
* This is done by prioritizing a subset of 64-bit operations that can be
2719
* emulated without too many steps on the average 32-bit machine.
2720
*
2721
* For example, these two lines seem similar, and run equally fast on 64-bit:
2722
*
2723
* xxh_u64 x;
2724
* x ^= (x >> 47); // good
2725
* x ^= (x >> 13); // bad
2726
*
2727
* However, to a 32-bit machine, there is a major difference.
2728
*
2729
* x ^= (x >> 47) looks like this:
2730
*
2731
* x.lo ^= (x.hi >> (47 - 32));
2732
*
2733
* while x ^= (x >> 13) looks like this:
2734
*
2735
* // note: funnel shifts are not usually cheap.
2736
* x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2737
* x.hi ^= (x.hi >> 13);
2738
*
2739
* The first one is significantly faster than the second, simply because the
2740
* shift is larger than 32. This means:
2741
* - All the bits we need are in the upper 32 bits, so we can ignore the lower
2742
* 32 bits in the shift.
2743
* - The shift result will always fit in the lower 32 bits, and therefore,
2744
* we can ignore the upper 32 bits in the xor.
2745
*
2746
* Thanks to this optimization, XXH3 only requires these features to be efficient:
2747
*
2748
* - Usable unaligned access
2749
* - A 32-bit or 64-bit ALU
2750
* - If 32-bit, a decent ADC instruction
2751
* - A 32 or 64-bit multiply with a 64-bit result
2752
* - For the 128-bit variant, a decent byteswap helps short inputs.
2753
*
2754
* The first two are already required by XXH32, and almost all 32-bit and 64-bit
2755
* platforms which can run XXH32 can run XXH3 efficiently.
2756
*
2757
* Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2758
* notable exception.
2759
*
2760
* First of all, Thumb-1 lacks support for the UMULL instruction which
2761
* performs the important long multiply. This means numerous __aeabi_lmul
2762
* calls.
2763
*
2764
* Second of all, the 8 functional registers are just not enough.
2765
* Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2766
* Lo registers, and this shuffling results in thousands more MOVs than A32.
2767
*
2768
* A32 and T32 don't have this limitation. They can access all 14 registers,
2769
* do a 32->64 multiply with UMULL, and the flexible operand allowing free
2770
* shifts is helpful, too.
2771
*
2772
* Therefore, we do a quick sanity check.
2773
*
2774
* If compiling Thumb-1 for a target which supports ARM instructions, we will
2775
* emit a warning, as it is not a "sane" platform to compile for.
2776
*
2777
* Usually, if this happens, it is because of an accident and you probably need
2778
* to specify -march, as you likely meant to compile for a newer architecture.
2779
*
2780
* Credit: large sections of the vectorial and asm source code paths
2781
* have been contributed by @easyaspi314
2782
*/
2783
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2784
# warning "XXH3 is highly inefficient without ARM or Thumb-2."
2785
#endif
2786
2787
/* ==========================================
2788
* Vectorization detection
2789
* ========================================== */
2790
2791
#ifdef XXH_DOXYGEN
2792
/*!
2793
* @ingroup tuning
2794
* @brief Overrides the vectorization implementation chosen for XXH3.
2795
*
2796
* Can be defined to 0 to disable SIMD or any of the values mentioned in
2797
* @ref XXH_VECTOR_TYPE.
2798
*
2799
* If this is not defined, it uses predefined macros to determine the best
2800
* implementation.
2801
*/
2802
# define XXH_VECTOR XXH_SCALAR
2803
/*!
2804
* @ingroup tuning
2805
* @brief Possible values for @ref XXH_VECTOR.
2806
*
2807
* Note that these are actually implemented as macros.
2808
*
2809
* If this is not defined, it is detected automatically.
2810
* @ref XXH_X86DISPATCH overrides this.
2811
*/
2812
enum XXH_VECTOR_TYPE /* fake enum */ {
2813
XXH_SCALAR = 0, /*!< Portable scalar version */
2814
XXH_SSE2 = 1, /*!<
2815
* SSE2 for Pentium 4, Opteron, all x86_64.
2816
*
2817
* @note SSE2 is also guaranteed on Windows 10, macOS, and
2818
* Android x86.
2819
*/
2820
XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
2821
XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
2822
XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */
2823
XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
2824
};
2825
/*!
2826
* @ingroup tuning
2827
* @brief Selects the minimum alignment for XXH3's accumulators.
2828
*
2829
* When using SIMD, this should match the alignment reqired for said vector
2830
* type, so, for example, 32 for AVX2.
2831
*
2832
* Default: Auto detected.
2833
*/
2834
# define XXH_ACC_ALIGN 8
2835
#endif
2836
2837
/* Actual definition */
2838
#ifndef XXH_DOXYGEN
2839
# define XXH_SCALAR 0
2840
# define XXH_SSE2 1
2841
# define XXH_AVX2 2
2842
# define XXH_AVX512 3
2843
# define XXH_NEON 4
2844
# define XXH_VSX 5
2845
#endif
2846
2847
#ifndef XXH_VECTOR /* can be defined on command line */
2848
# if defined(__AVX512F__)
2849
# define XXH_VECTOR XXH_AVX512
2850
# elif defined(__AVX2__)
2851
# define XXH_VECTOR XXH_AVX2
2852
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2853
# define XXH_VECTOR XXH_SSE2
2854
# elif defined(__GNUC__) /* msvc support maybe later */ \
2855
&& (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
2856
&& (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
2857
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
2858
# define XXH_VECTOR XXH_NEON
2859
# elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2860
|| (defined(__s390x__) && defined(__VEC__)) \
2861
&& defined(__GNUC__) /* TODO: IBM XL */
2862
# define XXH_VECTOR XXH_VSX
2863
# else
2864
# define XXH_VECTOR XXH_SCALAR
2865
# endif
2866
#endif
2867
2868
/*
2869
* Controls the alignment of the accumulator,
2870
* for compatibility with aligned vector loads, which are usually faster.
2871
*/
2872
#ifndef XXH_ACC_ALIGN
2873
# if defined(XXH_X86DISPATCH)
2874
# define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
2875
# elif XXH_VECTOR == XXH_SCALAR /* scalar */
2876
# define XXH_ACC_ALIGN 8
2877
# elif XXH_VECTOR == XXH_SSE2 /* sse2 */
2878
# define XXH_ACC_ALIGN 16
2879
# elif XXH_VECTOR == XXH_AVX2 /* avx2 */
2880
# define XXH_ACC_ALIGN 32
2881
# elif XXH_VECTOR == XXH_NEON /* neon */
2882
# define XXH_ACC_ALIGN 16
2883
# elif XXH_VECTOR == XXH_VSX /* vsx */
2884
# define XXH_ACC_ALIGN 16
2885
# elif XXH_VECTOR == XXH_AVX512 /* avx512 */
2886
# define XXH_ACC_ALIGN 64
2887
# endif
2888
#endif
2889
2890
#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2891
|| XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2892
# define XXH_SEC_ALIGN XXH_ACC_ALIGN
2893
#else
2894
# define XXH_SEC_ALIGN 8
2895
#endif
2896
2897
/*
2898
* UGLY HACK:
2899
* GCC usually generates the best code with -O3 for xxHash.
2900
*
2901
* However, when targeting AVX2, it is overzealous in its unrolling resulting
2902
* in code roughly 3/4 the speed of Clang.
2903
*
2904
* There are other issues, such as GCC splitting _mm256_loadu_si256 into
2905
* _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2906
* only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2907
*
2908
* That is why when compiling the AVX2 version, it is recommended to use either
2909
* -O2 -mavx2 -march=haswell
2910
* or
2911
* -O2 -mavx2 -mno-avx256-split-unaligned-load
2912
* for decent performance, or to use Clang instead.
2913
*
2914
* Fortunately, we can control the first one with a pragma that forces GCC into
2915
* -O2, but the other one we can't control without "failed to inline always
2916
* inline function due to target mismatch" warnings.
2917
*/
2918
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2919
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2920
&& defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2921
# pragma GCC push_options
2922
# pragma GCC optimize("-O2")
2923
#endif
2924
2925
2926
#if XXH_VECTOR == XXH_NEON
2927
/*
2928
* NEON's setup for vmlal_u32 is a little more complicated than it is on
2929
* SSE2, AVX2, and VSX.
2930
*
2931
* While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2932
*
2933
* To do the same operation, the 128-bit 'Q' register needs to be split into
2934
* two 64-bit 'D' registers, performing this operation::
2935
*
2936
* [ a | b ]
2937
* | '---------. .--------' |
2938
* | x |
2939
* | .---------' '--------. |
2940
* [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
2941
*
2942
* Due to significant changes in aarch64, the fastest method for aarch64 is
2943
* completely different than the fastest method for ARMv7-A.
2944
*
2945
* ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2946
* D11 will modify the high half of Q5. This is similar to how modifying AH
2947
* will only affect bits 8-15 of AX on x86.
2948
*
2949
* VZIP takes two registers, and puts even lanes in one register and odd lanes
2950
* in the other.
2951
*
2952
* On ARMv7-A, this strangely modifies both parameters in place instead of
2953
* taking the usual 3-operand form.
2954
*
2955
* Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2956
* lower and upper halves of the Q register to end up with the high and low
2957
* halves where we want - all in one instruction.
2958
*
2959
* vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2960
*
2961
* Unfortunately we need inline assembly for this: Instructions modifying two
2962
* registers at once is not possible in GCC or Clang's IR, and they have to
2963
* create a copy.
2964
*
2965
* aarch64 requires a different approach.
2966
*
2967
* In order to make it easier to write a decent compiler for aarch64, many
2968
* quirks were removed, such as conditional execution.
2969
*
2970
* NEON was also affected by this.
2971
*
2972
* aarch64 cannot access the high bits of a Q-form register, and writes to a
2973
* D-form register zero the high bits, similar to how writes to W-form scalar
2974
* registers (or DWORD registers on x86_64) work.
2975
*
2976
* The formerly free vget_high intrinsics now require a vext (with a few
2977
* exceptions)
2978
*
2979
* Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2980
* of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2981
* operand.
2982
*
2983
* The equivalent of the VZIP.32 on the lower and upper halves would be this
2984
* mess:
2985
*
2986
* ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
2987
* zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
2988
* zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
2989
*
2990
* Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
2991
*
2992
* shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
2993
* xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
2994
*
2995
* This is available on ARMv7-A, but is less efficient than a single VZIP.32.
2996
*/
2997
2998
/*!
2999
* Function-like macro:
3000
* void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
3001
* {
3002
* outLo = (uint32x2_t)(in & 0xFFFFFFFF);
3003
* outHi = (uint32x2_t)(in >> 32);
3004
* in = UNDEFINED;
3005
* }
3006
*/
3007
# if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
3008
&& defined(__GNUC__) \
3009
&& !defined(__aarch64__) && !defined(__arm64__)
3010
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3011
do { \
3012
/* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
3013
/* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
3014
/* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
3015
__asm__("vzip.32 %e0, %f0" : "+w" (in)); \
3016
(outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
3017
(outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
3018
} while (0)
3019
# else
3020
# define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3021
do { \
3022
(outLo) = vmovn_u64 (in); \
3023
(outHi) = vshrn_n_u64 ((in), 32); \
3024
} while (0)
3025
# endif
3026
#endif /* XXH_VECTOR == XXH_NEON */
3027
3028
/*
3029
* VSX and Z Vector helpers.
3030
*
3031
* This is very messy, and any pull requests to clean this up are welcome.
3032
*
3033
* There are a lot of problems with supporting VSX and s390x, due to
3034
* inconsistent intrinsics, spotty coverage, and multiple endiannesses.
3035
*/
3036
#if XXH_VECTOR == XXH_VSX
3037
# if defined(__s390x__)
3038
# include <s390intrin.h>
3039
# else
3040
/* gcc's altivec.h can have the unwanted consequence to unconditionally
3041
* #define bool, vector, and pixel keywords,
3042
* with bad consequences for programs already using these keywords for other purposes.
3043
* The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
3044
* __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
3045
* but it seems that, in some cases, it isn't.
3046
* Force the build macro to be defined, so that keywords are not altered.
3047
*/
3048
# if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
3049
# define __APPLE_ALTIVEC__
3050
# endif
3051
# include <altivec.h>
3052
# endif
3053
3054
typedef __vector unsigned long long xxh_u64x2;
3055
typedef __vector unsigned char xxh_u8x16;
3056
typedef __vector unsigned xxh_u32x4;
3057
3058
# ifndef XXH_VSX_BE
3059
# if defined(__BIG_ENDIAN__) \
3060
|| (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
3061
# define XXH_VSX_BE 1
3062
# elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
3063
# warning "-maltivec=be is not recommended. Please use native endianness."
3064
# define XXH_VSX_BE 1
3065
# else
3066
# define XXH_VSX_BE 0
3067
# endif
3068
# endif /* !defined(XXH_VSX_BE) */
3069
3070
# if XXH_VSX_BE
3071
# if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
3072
# define XXH_vec_revb vec_revb
3073
# else
3074
/*!
3075
* A polyfill for POWER9's vec_revb().
3076
*/
3077
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
3078
{
3079
xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
3080
0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
3081
return vec_perm(val, val, vByteSwap);
3082
}
3083
# endif
3084
# endif /* XXH_VSX_BE */
3085
3086
/*!
3087
* Performs an unaligned vector load and byte swaps it on big endian.
3088
*/
3089
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
3090
{
3091
xxh_u64x2 ret;
3092
memcpy(&ret, ptr, sizeof(xxh_u64x2));
3093
# if XXH_VSX_BE
3094
ret = XXH_vec_revb(ret);
3095
# endif
3096
return ret;
3097
}
3098
3099
/*
3100
* vec_mulo and vec_mule are very problematic intrinsics on PowerPC
3101
*
3102
* These intrinsics weren't added until GCC 8, despite existing for a while,
3103
* and they are endian dependent. Also, their meaning swap depending on version.
3104
* */
3105
# if defined(__s390x__)
3106
/* s390x is always big endian, no issue on this platform */
3107
# define XXH_vec_mulo vec_mulo
3108
# define XXH_vec_mule vec_mule
3109
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
3110
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
3111
# define XXH_vec_mulo __builtin_altivec_vmulouw
3112
# define XXH_vec_mule __builtin_altivec_vmuleuw
3113
# else
3114
/* gcc needs inline assembly */
3115
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
3116
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
3117
{
3118
xxh_u64x2 result;
3119
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3120
return result;
3121
}
3122
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
3123
{
3124
xxh_u64x2 result;
3125
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3126
return result;
3127
}
3128
# endif /* XXH_vec_mulo, XXH_vec_mule */
3129
#endif /* XXH_VECTOR == XXH_VSX */
3130
3131
3132
/* prefetch
3133
* can be disabled, by declaring XXH_NO_PREFETCH build macro */
3134
#if defined(XXH_NO_PREFETCH)
3135
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3136
#else
3137
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
3138
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
3139
# define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
3140
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
3141
# define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
3142
# else
3143
# define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3144
# endif
3145
#endif /* XXH_NO_PREFETCH */
3146
3147
3148
/* ==========================================
3149
* XXH3 default settings
3150
* ========================================== */
3151
3152
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
3153
3154
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
3155
# error "default keyset is not large enough"
3156
#endif
3157
3158
/*! Pseudorandom secret taken directly from FARSH. */
3159
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
3160
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
3161
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
3162
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
3163
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
3164
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
3165
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
3166
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
3167
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
3168
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
3169
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
3170
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
3171
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
3172
};
3173
3174
3175
#ifdef XXH_OLD_NAMES
3176
# define kSecret XXH3_kSecret
3177
#endif
3178
3179
#ifdef XXH_DOXYGEN
3180
/*!
3181
* @brief Calculates a 32-bit to 64-bit long multiply.
3182
*
3183
* Implemented as a macro.
3184
*
3185
* Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
3186
* need to (but it shouldn't need to anyways, it is about 7 instructions to do
3187
* a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
3188
* use that instead of the normal method.
3189
*
3190
* If you are compiling for platforms like Thumb-1 and don't have a better option,
3191
* you may also want to write your own long multiply routine here.
3192
*
3193
* @param x, y Numbers to be multiplied
3194
* @return 64-bit product of the low 32 bits of @p x and @p y.
3195
*/
3196
XXH_FORCE_INLINE xxh_u64
3197
XXH_mult32to64(xxh_u64 x, xxh_u64 y)
3198
{
3199
return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
3200
}
3201
#elif defined(_MSC_VER) && defined(_M_IX86)
3202
# include <intrin.h>
3203
# define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
3204
#else
3205
/*
3206
* Downcast + upcast is usually better than masking on older compilers like
3207
* GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
3208
*
3209
* The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
3210
* and perform a full 64x64 multiply -- entirely redundant on 32-bit.
3211
*/
3212
# define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
3213
#endif
3214
3215
/*!
3216
* @brief Calculates a 64->128-bit long multiply.
3217
*
3218
* Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
3219
* version.
3220
*
3221
* @param lhs, rhs The 64-bit integers to be multiplied
3222
* @return The 128-bit result represented in an @ref XXH128_hash_t.
3223
*/
3224
static XXH128_hash_t
3225
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
3226
{
3227
/*
3228
* GCC/Clang __uint128_t method.
3229
*
3230
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
3231
* This is usually the best way as it usually uses a native long 64-bit
3232
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
3233
*
3234
* Usually.
3235
*
3236
* Despite being a 32-bit platform, Clang (and emscripten) define this type
3237
* despite not having the arithmetic for it. This results in a laggy
3238
* compiler builtin call which calculates a full 128-bit multiply.
3239
* In that case it is best to use the portable one.
3240
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
3241
*/
3242
#if defined(__GNUC__) && !defined(__wasm__) \
3243
&& defined(__SIZEOF_INT128__) \
3244
|| (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
3245
3246
__uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
3247
XXH128_hash_t r128;
3248
r128.low64 = (xxh_u64)(product);
3249
r128.high64 = (xxh_u64)(product >> 64);
3250
return r128;
3251
3252
/*
3253
* MSVC for x64's _umul128 method.
3254
*
3255
* xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
3256
*
3257
* This compiles to single operand MUL on x64.
3258
*/
3259
#elif defined(_M_X64) || defined(_M_IA64)
3260
3261
#ifndef _MSC_VER
3262
# pragma intrinsic(_umul128)
3263
#endif
3264
xxh_u64 product_high;
3265
xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
3266
XXH128_hash_t r128;
3267
r128.low64 = product_low;
3268
r128.high64 = product_high;
3269
return r128;
3270
3271
#else
3272
/*
3273
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
3274
*
3275
* This is a fast and simple grade school multiply, which is shown below
3276
* with base 10 arithmetic instead of base 0x100000000.
3277
*
3278
* 9 3 // D2 lhs = 93
3279
* x 7 5 // D2 rhs = 75
3280
* ----------
3281
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
3282
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
3283
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
3284
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
3285
* ---------
3286
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
3287
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
3288
* ---------
3289
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
3290
*
3291
* The reasons for adding the products like this are:
3292
* 1. It avoids manual carry tracking. Just like how
3293
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
3294
* This avoids a lot of complexity.
3295
*
3296
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
3297
* instruction available in ARM's Digital Signal Processing extension
3298
* in 32-bit ARMv6 and later, which is shown below:
3299
*
3300
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
3301
* {
3302
* xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
3303
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
3304
* *RdHi = (xxh_u32)(product >> 32);
3305
* }
3306
*
3307
* This instruction was designed for efficient long multiplication, and
3308
* allows this to be calculated in only 4 instructions at speeds
3309
* comparable to some 64-bit ALUs.
3310
*
3311
* 3. It isn't terrible on other platforms. Usually this will be a couple
3312
* of 32-bit ADD/ADCs.
3313
*/
3314
3315
/* First calculate all of the cross products. */
3316
xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
3317
xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
3318
xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
3319
xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
3320
3321
/* Now add the products together. These will never overflow. */
3322
xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
3323
xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
3324
xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
3325
3326
XXH128_hash_t r128;
3327
r128.low64 = lower;
3328
r128.high64 = upper;
3329
return r128;
3330
#endif
3331
}
3332
3333
/*!
3334
* @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
3335
*
3336
* The reason for the separate function is to prevent passing too many structs
3337
* around by value. This will hopefully inline the multiply, but we don't force it.
3338
*
3339
* @param lhs, rhs The 64-bit integers to multiply
3340
* @return The low 64 bits of the product XOR'd by the high 64 bits.
3341
* @see XXH_mult64to128()
3342
*/
3343
static xxh_u64
3344
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
3345
{
3346
XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
3347
return product.low64 ^ product.high64;
3348
}
3349
3350
/*! Seems to produce slightly better code on GCC for some reason. */
3351
XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
3352
{
3353
XXH_ASSERT(0 <= shift && shift < 64);
3354
return v64 ^ (v64 >> shift);
3355
}
3356
3357
/*
3358
* This is a fast avalanche stage,
3359
* suitable when input bits are already partially mixed
3360
*/
3361
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
3362
{
3363
h64 = XXH_xorshift64(h64, 37);
3364
h64 *= 0x165667919E3779F9ULL;
3365
h64 = XXH_xorshift64(h64, 32);
3366
return h64;
3367
}
3368
3369
/*
3370
* This is a stronger avalanche,
3371
* inspired by Pelle Evensen's rrmxmx
3372
* preferable when input has not been previously mixed
3373
*/
3374
static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
3375
{
3376
/* this mix is inspired by Pelle Evensen's rrmxmx */
3377
h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
3378
h64 *= 0x9FB21C651E98DF25ULL;
3379
h64 ^= (h64 >> 35) + len ;
3380
h64 *= 0x9FB21C651E98DF25ULL;
3381
return XXH_xorshift64(h64, 28);
3382
}
3383
3384
3385
/* ==========================================
3386
* Short keys
3387
* ==========================================
3388
* One of the shortcomings of XXH32 and XXH64 was that their performance was
3389
* sub-optimal on short lengths. It used an iterative algorithm which strongly
3390
* favored lengths that were a multiple of 4 or 8.
3391
*
3392
* Instead of iterating over individual inputs, we use a set of single shot
3393
* functions which piece together a range of lengths and operate in constant time.
3394
*
3395
* Additionally, the number of multiplies has been significantly reduced. This
3396
* reduces latency, especially when emulating 64-bit multiplies on 32-bit.
3397
*
3398
* Depending on the platform, this may or may not be faster than XXH32, but it
3399
* is almost guaranteed to be faster than XXH64.
3400
*/
3401
3402
/*
3403
* At very short lengths, there isn't enough input to fully hide secrets, or use
3404
* the entire secret.
3405
*
3406
* There is also only a limited amount of mixing we can do before significantly
3407
* impacting performance.
3408
*
3409
* Therefore, we use different sections of the secret and always mix two secret
3410
* samples with an XOR. This should have no effect on performance on the
3411
* seedless or withSeed variants because everything _should_ be constant folded
3412
* by modern compilers.
3413
*
3414
* The XOR mixing hides individual parts of the secret and increases entropy.
3415
*
3416
* This adds an extra layer of strength for custom secrets.
3417
*/
3418
XXH_FORCE_INLINE XXH64_hash_t
3419
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3420
{
3421
XXH_ASSERT(input != NULL);
3422
XXH_ASSERT(1 <= len && len <= 3);
3423
XXH_ASSERT(secret != NULL);
3424
/*
3425
* len = 1: combined = { input[0], 0x01, input[0], input[0] }
3426
* len = 2: combined = { input[1], 0x02, input[0], input[1] }
3427
* len = 3: combined = { input[2], 0x03, input[0], input[1] }
3428
*/
3429
{ xxh_u8 const c1 = input[0];
3430
xxh_u8 const c2 = input[len >> 1];
3431
xxh_u8 const c3 = input[len - 1];
3432
xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
3433
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
3434
xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
3435
xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
3436
return XXH64_avalanche(keyed);
3437
}
3438
}
3439
3440
XXH_FORCE_INLINE XXH64_hash_t
3441
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3442
{
3443
XXH_ASSERT(input != NULL);
3444
XXH_ASSERT(secret != NULL);
3445
XXH_ASSERT(4 <= len && len < 8);
3446
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
3447
{ xxh_u32 const input1 = XXH_readLE32(input);
3448
xxh_u32 const input2 = XXH_readLE32(input + len - 4);
3449
xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
3450
xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
3451
xxh_u64 const keyed = input64 ^ bitflip;
3452
return XXH3_rrmxmx(keyed, len);
3453
}
3454
}
3455
3456
XXH_FORCE_INLINE XXH64_hash_t
3457
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3458
{
3459
XXH_ASSERT(input != NULL);
3460
XXH_ASSERT(secret != NULL);
3461
XXH_ASSERT(8 <= len && len <= 16);
3462
{ xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
3463
xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
3464
xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
3465
xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
3466
xxh_u64 const acc = len
3467
+ XXH_swap64(input_lo) + input_hi
3468
+ XXH3_mul128_fold64(input_lo, input_hi);
3469
return XXH3_avalanche(acc);
3470
}
3471
}
3472
3473
XXH_FORCE_INLINE XXH64_hash_t
3474
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3475
{
3476
XXH_ASSERT(len <= 16);
3477
{ if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
3478
if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
3479
if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
3480
return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
3481
}
3482
}
3483
3484
/*
3485
* DISCLAIMER: There are known *seed-dependent* multicollisions here due to
3486
* multiplication by zero, affecting hashes of lengths 17 to 240.
3487
*
3488
* However, they are very unlikely.
3489
*
3490
* Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
3491
* unseeded non-cryptographic hashes, it does not attempt to defend itself
3492
* against specially crafted inputs, only random inputs.
3493
*
3494
* Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
3495
* cancelling out the secret is taken an arbitrary number of times (addressed
3496
* in XXH3_accumulate_512), this collision is very unlikely with random inputs
3497
* and/or proper seeding:
3498
*
3499
* This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
3500
* function that is only called up to 16 times per hash with up to 240 bytes of
3501
* input.
3502
*
3503
* This is not too bad for a non-cryptographic hash function, especially with
3504
* only 64 bit outputs.
3505
*
3506
* The 128-bit variant (which trades some speed for strength) is NOT affected
3507
* by this, although it is always a good idea to use a proper seed if you care
3508
* about strength.
3509
*/
3510
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
3511
const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
3512
{
3513
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
3514
&& defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
3515
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
3516
/*
3517
* UGLY HACK:
3518
* GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
3519
* slower code.
3520
*
3521
* By forcing seed64 into a register, we disrupt the cost model and
3522
* cause it to scalarize. See `XXH32_round()`
3523
*
3524
* FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
3525
* XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
3526
* GCC 9.2, despite both emitting scalar code.
3527
*
3528
* GCC generates much better scalar code than Clang for the rest of XXH3,
3529
* which is why finding a more optimal codepath is an interest.
3530
*/
3531
__asm__ ("" : "+r" (seed64));
3532
#endif
3533
{ xxh_u64 const input_lo = XXH_readLE64(input);
3534
xxh_u64 const input_hi = XXH_readLE64(input+8);
3535
return XXH3_mul128_fold64(
3536
input_lo ^ (XXH_readLE64(secret) + seed64),
3537
input_hi ^ (XXH_readLE64(secret+8) - seed64)
3538
);
3539
}
3540
}
3541
3542
/* For mid range keys, XXH3 uses a Mum-hash variant. */
3543
XXH_FORCE_INLINE XXH64_hash_t
3544
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3545
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3546
XXH64_hash_t seed)
3547
{
3548
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3549
XXH_ASSERT(16 < len && len <= 128);
3550
3551
{ xxh_u64 acc = len * XXH_PRIME64_1;
3552
if (len > 32) {
3553
if (len > 64) {
3554
if (len > 96) {
3555
acc += XXH3_mix16B(input+48, secret+96, seed);
3556
acc += XXH3_mix16B(input+len-64, secret+112, seed);
3557
}
3558
acc += XXH3_mix16B(input+32, secret+64, seed);
3559
acc += XXH3_mix16B(input+len-48, secret+80, seed);
3560
}
3561
acc += XXH3_mix16B(input+16, secret+32, seed);
3562
acc += XXH3_mix16B(input+len-32, secret+48, seed);
3563
}
3564
acc += XXH3_mix16B(input+0, secret+0, seed);
3565
acc += XXH3_mix16B(input+len-16, secret+16, seed);
3566
3567
return XXH3_avalanche(acc);
3568
}
3569
}
3570
3571
#define XXH3_MIDSIZE_MAX 240
3572
3573
XXH_NO_INLINE XXH64_hash_t
3574
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3575
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3576
XXH64_hash_t seed)
3577
{
3578
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3579
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
3580
3581
#define XXH3_MIDSIZE_STARTOFFSET 3
3582
#define XXH3_MIDSIZE_LASTOFFSET 17
3583
3584
{ xxh_u64 acc = len * XXH_PRIME64_1;
3585
int const nbRounds = (int)len / 16;
3586
int i;
3587
for (i=0; i<8; i++) {
3588
acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
3589
}
3590
acc = XXH3_avalanche(acc);
3591
XXH_ASSERT(nbRounds >= 8);
3592
#if defined(__clang__) /* Clang */ \
3593
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
3594
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
3595
/*
3596
* UGLY HACK:
3597
* Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
3598
* In everywhere else, it uses scalar code.
3599
*
3600
* For 64->128-bit multiplies, even if the NEON was 100% optimal, it
3601
* would still be slower than UMAAL (see XXH_mult64to128).
3602
*
3603
* Unfortunately, Clang doesn't handle the long multiplies properly and
3604
* converts them to the nonexistent "vmulq_u64" intrinsic, which is then
3605
* scalarized into an ugly mess of VMOV.32 instructions.
3606
*
3607
* This mess is difficult to avoid without turning autovectorization
3608
* off completely, but they are usually relatively minor and/or not
3609
* worth it to fix.
3610
*
3611
* This loop is the easiest to fix, as unlike XXH32, this pragma
3612
* _actually works_ because it is a loop vectorization instead of an
3613
* SLP vectorization.
3614
*/
3615
#pragma clang loop vectorize(disable)
3616
#endif
3617
for (i=8 ; i < nbRounds; i++) {
3618
acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
3619
}
3620
/* last bytes */
3621
acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
3622
return XXH3_avalanche(acc);
3623
}
3624
}
3625
3626
3627
/* ======= Long Keys ======= */
3628
3629
#define XXH_STRIPE_LEN 64
3630
#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
3631
#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
3632
3633
#ifdef XXH_OLD_NAMES
3634
# define STRIPE_LEN XXH_STRIPE_LEN
3635
# define ACC_NB XXH_ACC_NB
3636
#endif
3637
3638
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
3639
{
3640
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
3641
memcpy(dst, &v64, sizeof(v64));
3642
}
3643
3644
/* Several intrinsic functions below are supposed to accept __int64 as argument,
3645
* as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
3646
* However, several environments do not define __int64 type,
3647
* requiring a workaround.
3648
*/
3649
#if !defined (__VMS) \
3650
&& (defined (__cplusplus) \
3651
|| (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
3652
typedef int64_t xxh_i64;
3653
#else
3654
/* the following type must have a width of 64-bit */
3655
typedef long long xxh_i64;
3656
#endif
3657
3658
/*
3659
* XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3660
*
3661
* It is a hardened version of UMAC, based off of FARSH's implementation.
3662
*
3663
* This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3664
* implementations, and it is ridiculously fast.
3665
*
3666
* We harden it by mixing the original input to the accumulators as well as the product.
3667
*
3668
* This means that in the (relatively likely) case of a multiply by zero, the
3669
* original input is preserved.
3670
*
3671
* On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3672
* cross-pollination, as otherwise the upper and lower halves would be
3673
* essentially independent.
3674
*
3675
* This doesn't matter on 64-bit hashes since they all get merged together in
3676
* the end, so we skip the extra step.
3677
*
3678
* Both XXH3_64bits and XXH3_128bits use this subroutine.
3679
*/
3680
3681
#if (XXH_VECTOR == XXH_AVX512) \
3682
|| (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
3683
3684
#ifndef XXH_TARGET_AVX512
3685
# define XXH_TARGET_AVX512 /* disable attribute target */
3686
#endif
3687
3688
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3689
XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3690
const void* XXH_RESTRICT input,
3691
const void* XXH_RESTRICT secret)
3692
{
3693
XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc;
3694
XXH_ASSERT((((size_t)acc) & 63) == 0);
3695
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3696
3697
{
3698
/* data_vec = input[0]; */
3699
__m512i const data_vec = _mm512_loadu_si512 (input);
3700
/* key_vec = secret[0]; */
3701
__m512i const key_vec = _mm512_loadu_si512 (secret);
3702
/* data_key = data_vec ^ key_vec; */
3703
__m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3704
/* data_key_lo = data_key >> 32; */
3705
__m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3706
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3707
__m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
3708
/* xacc[0] += swap(data_vec); */
3709
__m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3710
__m512i const sum = _mm512_add_epi64(*xacc, data_swap);
3711
/* xacc[0] += product; */
3712
*xacc = _mm512_add_epi64(product, sum);
3713
}
3714
}
3715
3716
/*
3717
* XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3718
*
3719
* Multiplication isn't perfect, as explained by Google in HighwayHash:
3720
*
3721
* // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3722
* // varying degrees. In descending order of goodness, bytes
3723
* // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3724
* // As expected, the upper and lower bytes are much worse.
3725
*
3726
* Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3727
*
3728
* Since our algorithm uses a pseudorandom secret to add some variance into the
3729
* mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3730
*
3731
* This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3732
* extraction.
3733
*
3734
* Both XXH3_64bits and XXH3_128bits use this subroutine.
3735
*/
3736
3737
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3738
XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3739
{
3740
XXH_ASSERT((((size_t)acc) & 63) == 0);
3741
XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3742
{ XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc;
3743
const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3744
3745
/* xacc[0] ^= (xacc[0] >> 47) */
3746
__m512i const acc_vec = *xacc;
3747
__m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
3748
__m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
3749
/* xacc[0] ^= secret; */
3750
__m512i const key_vec = _mm512_loadu_si512 (secret);
3751
__m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3752
3753
/* xacc[0] *= XXH_PRIME32_1; */
3754
__m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3755
__m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
3756
__m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
3757
*xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3758
}
3759
}
3760
3761
XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3762
XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3763
{
3764
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3765
XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3766
XXH_ASSERT(((size_t)customSecret & 63) == 0);
3767
(void)(&XXH_writeLE64);
3768
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3769
__m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64);
3770
3771
XXH_ALIGN(64) const __m512i* const src = (const __m512i*) XXH3_kSecret;
3772
XXH_ALIGN(64) __m512i* const dest = ( __m512i*) customSecret;
3773
int i;
3774
for (i=0; i < nbRounds; ++i) {
3775
/* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3776
* this will warn "discards ‘const’ qualifier". */
3777
union {
3778
XXH_ALIGN(64) const __m512i* cp;
3779
XXH_ALIGN(64) void* p;
3780
} remote_const_void;
3781
remote_const_void.cp = src + i;
3782
dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3783
} }
3784
}
3785
3786
#endif
3787
3788
#if (XXH_VECTOR == XXH_AVX2) \
3789
|| (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
3790
3791
#ifndef XXH_TARGET_AVX2
3792
# define XXH_TARGET_AVX2 /* disable attribute target */
3793
#endif
3794
3795
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3796
XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3797
const void* XXH_RESTRICT input,
3798
const void* XXH_RESTRICT secret)
3799
{
3800
XXH_ASSERT((((size_t)acc) & 31) == 0);
3801
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
3802
/* Unaligned. This is mainly for pointer arithmetic, and because
3803
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3804
const __m256i* const xinput = (const __m256i *) input;
3805
/* Unaligned. This is mainly for pointer arithmetic, and because
3806
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3807
const __m256i* const xsecret = (const __m256i *) secret;
3808
3809
size_t i;
3810
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3811
/* data_vec = xinput[i]; */
3812
__m256i const data_vec = _mm256_loadu_si256 (xinput+i);
3813
/* key_vec = xsecret[i]; */
3814
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3815
/* data_key = data_vec ^ key_vec; */
3816
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3817
/* data_key_lo = data_key >> 32; */
3818
__m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3819
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3820
__m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
3821
/* xacc[i] += swap(data_vec); */
3822
__m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3823
__m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
3824
/* xacc[i] += product; */
3825
xacc[i] = _mm256_add_epi64(product, sum);
3826
} }
3827
}
3828
3829
XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3830
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3831
{
3832
XXH_ASSERT((((size_t)acc) & 31) == 0);
3833
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
3834
/* Unaligned. This is mainly for pointer arithmetic, and because
3835
* _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3836
const __m256i* const xsecret = (const __m256i *) secret;
3837
const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3838
3839
size_t i;
3840
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3841
/* xacc[i] ^= (xacc[i] >> 47) */
3842
__m256i const acc_vec = xacc[i];
3843
__m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
3844
__m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
3845
/* xacc[i] ^= xsecret; */
3846
__m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3847
__m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3848
3849
/* xacc[i] *= XXH_PRIME32_1; */
3850
__m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3851
__m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
3852
__m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
3853
xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3854
}
3855
}
3856
}
3857
3858
XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3859
{
3860
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3861
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3862
XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3863
(void)(&XXH_writeLE64);
3864
XXH_PREFETCH(customSecret);
3865
{ __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64);
3866
3867
XXH_ALIGN(64) const __m256i* const src = (const __m256i*) XXH3_kSecret;
3868
XXH_ALIGN(64) __m256i* dest = ( __m256i*) customSecret;
3869
3870
# if defined(__GNUC__) || defined(__clang__)
3871
/*
3872
* On GCC & Clang, marking 'dest' as modified will cause the compiler:
3873
* - do not extract the secret from sse registers in the internal loop
3874
* - use less common registers, and avoid pushing these reg into stack
3875
* The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with
3876
* customSecret, and on aarch64, this prevented LDP from merging two
3877
* loads together for free. Putting the loads together before the stores
3878
* properly generates LDP.
3879
*/
3880
__asm__("" : "+r" (dest));
3881
# endif
3882
3883
/* GCC -O2 need unroll loop manually */
3884
dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3885
dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3886
dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3887
dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3888
dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3889
dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3890
}
3891
}
3892
3893
#endif
3894
3895
/* x86dispatch always generates SSE2 */
3896
#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3897
3898
#ifndef XXH_TARGET_SSE2
3899
# define XXH_TARGET_SSE2 /* disable attribute target */
3900
#endif
3901
3902
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3903
XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3904
const void* XXH_RESTRICT input,
3905
const void* XXH_RESTRICT secret)
3906
{
3907
/* SSE2 is just a half-scale version of the AVX2 version. */
3908
XXH_ASSERT((((size_t)acc) & 15) == 0);
3909
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc;
3910
/* Unaligned. This is mainly for pointer arithmetic, and because
3911
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3912
const __m128i* const xinput = (const __m128i *) input;
3913
/* Unaligned. This is mainly for pointer arithmetic, and because
3914
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3915
const __m128i* const xsecret = (const __m128i *) secret;
3916
3917
size_t i;
3918
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3919
/* data_vec = xinput[i]; */
3920
__m128i const data_vec = _mm_loadu_si128 (xinput+i);
3921
/* key_vec = xsecret[i]; */
3922
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3923
/* data_key = data_vec ^ key_vec; */
3924
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3925
/* data_key_lo = data_key >> 32; */
3926
__m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3927
/* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3928
__m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
3929
/* xacc[i] += swap(data_vec); */
3930
__m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3931
__m128i const sum = _mm_add_epi64(xacc[i], data_swap);
3932
/* xacc[i] += product; */
3933
xacc[i] = _mm_add_epi64(product, sum);
3934
} }
3935
}
3936
3937
XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3938
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3939
{
3940
XXH_ASSERT((((size_t)acc) & 15) == 0);
3941
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
3942
/* Unaligned. This is mainly for pointer arithmetic, and because
3943
* _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3944
const __m128i* const xsecret = (const __m128i *) secret;
3945
const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3946
3947
size_t i;
3948
for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3949
/* xacc[i] ^= (xacc[i] >> 47) */
3950
__m128i const acc_vec = xacc[i];
3951
__m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
3952
__m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
3953
/* xacc[i] ^= xsecret[i]; */
3954
__m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3955
__m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3956
3957
/* xacc[i] *= XXH_PRIME32_1; */
3958
__m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3959
__m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
3960
__m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
3961
xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3962
}
3963
}
3964
}
3965
3966
XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3967
{
3968
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3969
(void)(&XXH_writeLE64);
3970
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
3971
3972
# if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
3973
// MSVC 32bit mode does not support _mm_set_epi64x before 2015
3974
XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 };
3975
__m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
3976
# else
3977
__m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64);
3978
# endif
3979
int i;
3980
3981
XXH_ALIGN(64) const float* const src = (float const*) XXH3_kSecret;
3982
XXH_ALIGN(XXH_SEC_ALIGN) __m128i* dest = (__m128i*) customSecret;
3983
# if defined(__GNUC__) || defined(__clang__)
3984
/*
3985
* On GCC & Clang, marking 'dest' as modified will cause the compiler:
3986
* - do not extract the secret from sse registers in the internal loop
3987
* - use less common registers, and avoid pushing these reg into stack
3988
*/
3989
__asm__("" : "+r" (dest));
3990
# endif
3991
3992
for (i=0; i < nbRounds; ++i) {
3993
dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed);
3994
} }
3995
}
3996
3997
#endif
3998
3999
#if (XXH_VECTOR == XXH_NEON)
4000
4001
XXH_FORCE_INLINE void
4002
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
4003
const void* XXH_RESTRICT input,
4004
const void* XXH_RESTRICT secret)
4005
{
4006
XXH_ASSERT((((size_t)acc) & 15) == 0);
4007
{
4008
XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
4009
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
4010
uint8_t const* const xinput = (const uint8_t *) input;
4011
uint8_t const* const xsecret = (const uint8_t *) secret;
4012
4013
size_t i;
4014
for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
4015
/* data_vec = xinput[i]; */
4016
uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
4017
/* key_vec = xsecret[i]; */
4018
uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
4019
uint64x2_t data_key;
4020
uint32x2_t data_key_lo, data_key_hi;
4021
/* xacc[i] += swap(data_vec); */
4022
uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
4023
uint64x2_t const swapped = vextq_u64(data64, data64, 1);
4024
xacc[i] = vaddq_u64 (xacc[i], swapped);
4025
/* data_key = data_vec ^ key_vec; */
4026
data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
4027
/* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
4028
* data_key_hi = (uint32x2_t) (data_key >> 32);
4029
* data_key = UNDEFINED; */
4030
XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4031
/* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
4032
xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
4033
4034
}
4035
}
4036
}
4037
4038
XXH_FORCE_INLINE void
4039
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4040
{
4041
XXH_ASSERT((((size_t)acc) & 15) == 0);
4042
4043
{ uint64x2_t* xacc = (uint64x2_t*) acc;
4044
uint8_t const* xsecret = (uint8_t const*) secret;
4045
uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
4046
4047
size_t i;
4048
for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
4049
/* xacc[i] ^= (xacc[i] >> 47); */
4050
uint64x2_t acc_vec = xacc[i];
4051
uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
4052
uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
4053
4054
/* xacc[i] ^= xsecret[i]; */
4055
uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
4056
uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
4057
4058
/* xacc[i] *= XXH_PRIME32_1 */
4059
uint32x2_t data_key_lo, data_key_hi;
4060
/* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
4061
* data_key_hi = (uint32x2_t) (xacc[i] >> 32);
4062
* xacc[i] = UNDEFINED; */
4063
XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4064
{ /*
4065
* prod_hi = (data_key >> 32) * XXH_PRIME32_1;
4066
*
4067
* Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
4068
* incorrectly "optimize" this:
4069
* tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
4070
* shifted = vshll_n_u32(tmp, 32);
4071
* to this:
4072
* tmp = "vmulq_u64"(a, b); // no such thing!
4073
* shifted = vshlq_n_u64(tmp, 32);
4074
*
4075
* However, unlike SSE, Clang lacks a 64-bit multiply routine
4076
* for NEON, and it scalarizes two 64-bit multiplies instead.
4077
*
4078
* vmull_u32 has the same timing as vmul_u32, and it avoids
4079
* this bug completely.
4080
* See https://bugs.llvm.org/show_bug.cgi?id=39967
4081
*/
4082
uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
4083
/* xacc[i] = prod_hi << 32; */
4084
xacc[i] = vshlq_n_u64(prod_hi, 32);
4085
/* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
4086
xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
4087
}
4088
} }
4089
}
4090
4091
#endif
4092
4093
#if (XXH_VECTOR == XXH_VSX)
4094
4095
XXH_FORCE_INLINE void
4096
XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
4097
const void* XXH_RESTRICT input,
4098
const void* XXH_RESTRICT secret)
4099
{
4100
xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */
4101
xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
4102
xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
4103
xxh_u64x2 const v32 = { 32, 32 };
4104
size_t i;
4105
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4106
/* data_vec = xinput[i]; */
4107
xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
4108
/* key_vec = xsecret[i]; */
4109
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4110
xxh_u64x2 const data_key = data_vec ^ key_vec;
4111
/* shuffled = (data_key << 32) | (data_key >> 32); */
4112
xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
4113
/* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
4114
xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
4115
xacc[i] += product;
4116
4117
/* swap high and low halves */
4118
#ifdef __s390x__
4119
xacc[i] += vec_permi(data_vec, data_vec, 2);
4120
#else
4121
xacc[i] += vec_xxpermdi(data_vec, data_vec, 2);
4122
#endif
4123
}
4124
}
4125
4126
XXH_FORCE_INLINE void
4127
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4128
{
4129
XXH_ASSERT((((size_t)acc) & 15) == 0);
4130
4131
{ xxh_u64x2* const xacc = (xxh_u64x2*) acc;
4132
const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
4133
/* constants */
4134
xxh_u64x2 const v32 = { 32, 32 };
4135
xxh_u64x2 const v47 = { 47, 47 };
4136
xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
4137
size_t i;
4138
for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4139
/* xacc[i] ^= (xacc[i] >> 47); */
4140
xxh_u64x2 const acc_vec = xacc[i];
4141
xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
4142
4143
/* xacc[i] ^= xsecret[i]; */
4144
xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4145
xxh_u64x2 const data_key = data_vec ^ key_vec;
4146
4147
/* xacc[i] *= XXH_PRIME32_1 */
4148
/* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
4149
xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
4150
/* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
4151
xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
4152
xacc[i] = prod_odd + (prod_even << v32);
4153
} }
4154
}
4155
4156
#endif
4157
4158
/* scalar variants - universal */
4159
4160
XXH_FORCE_INLINE void
4161
XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
4162
const void* XXH_RESTRICT input,
4163
const void* XXH_RESTRICT secret)
4164
{
4165
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4166
const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
4167
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4168
size_t i;
4169
XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
4170
for (i=0; i < XXH_ACC_NB; i++) {
4171
xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
4172
xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
4173
xacc[i ^ 1] += data_val; /* swap adjacent lanes */
4174
xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
4175
}
4176
}
4177
4178
XXH_FORCE_INLINE void
4179
XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4180
{
4181
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4182
const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4183
size_t i;
4184
XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
4185
for (i=0; i < XXH_ACC_NB; i++) {
4186
xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
4187
xxh_u64 acc64 = xacc[i];
4188
acc64 = XXH_xorshift64(acc64, 47);
4189
acc64 ^= key64;
4190
acc64 *= XXH_PRIME32_1;
4191
xacc[i] = acc64;
4192
}
4193
}
4194
4195
XXH_FORCE_INLINE void
4196
XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
4197
{
4198
/*
4199
* We need a separate pointer for the hack below,
4200
* which requires a non-const pointer.
4201
* Any decent compiler will optimize this out otherwise.
4202
*/
4203
const xxh_u8* kSecretPtr = XXH3_kSecret;
4204
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
4205
4206
#if defined(__clang__) && defined(__aarch64__)
4207
/*
4208
* UGLY HACK:
4209
* Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
4210
* placed sequentially, in order, at the top of the unrolled loop.
4211
*
4212
* While MOVK is great for generating constants (2 cycles for a 64-bit
4213
* constant compared to 4 cycles for LDR), long MOVK chains stall the
4214
* integer pipelines:
4215
* I L S
4216
* MOVK
4217
* MOVK
4218
* MOVK
4219
* MOVK
4220
* ADD
4221
* SUB STR
4222
* STR
4223
* By forcing loads from memory (as the asm line causes Clang to assume
4224
* that XXH3_kSecretPtr has been changed), the pipelines are used more
4225
* efficiently:
4226
* I L S
4227
* LDR
4228
* ADD LDR
4229
* SUB STR
4230
* STR
4231
* XXH3_64bits_withSeed, len == 256, Snapdragon 835
4232
* without hack: 2654.4 MB/s
4233
* with hack: 3202.9 MB/s
4234
*/
4235
__asm__("" : "+r" (kSecretPtr));
4236
#endif
4237
/*
4238
* Note: in debug mode, this overrides the asm optimization
4239
* and Clang will emit MOVK chains again.
4240
*/
4241
XXH_ASSERT(kSecretPtr == XXH3_kSecret);
4242
4243
{ int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
4244
int i;
4245
for (i=0; i < nbRounds; i++) {
4246
/*
4247
* The asm hack causes Clang to assume that kSecretPtr aliases with
4248
* customSecret, and on aarch64, this prevented LDP from merging two
4249
* loads together for free. Putting the loads together before the stores
4250
* properly generates LDP.
4251
*/
4252
xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
4253
xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
4254
XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
4255
XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
4256
} }
4257
}
4258
4259
4260
typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
4261
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
4262
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
4263
4264
4265
#if (XXH_VECTOR == XXH_AVX512)
4266
4267
#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
4268
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
4269
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
4270
4271
#elif (XXH_VECTOR == XXH_AVX2)
4272
4273
#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
4274
#define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
4275
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
4276
4277
#elif (XXH_VECTOR == XXH_SSE2)
4278
4279
#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
4280
#define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
4281
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
4282
4283
#elif (XXH_VECTOR == XXH_NEON)
4284
4285
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
4286
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
4287
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4288
4289
#elif (XXH_VECTOR == XXH_VSX)
4290
4291
#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
4292
#define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
4293
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4294
4295
#else /* scalar */
4296
4297
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
4298
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
4299
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4300
4301
#endif
4302
4303
4304
4305
#ifndef XXH_PREFETCH_DIST
4306
# ifdef __clang__
4307
# define XXH_PREFETCH_DIST 320
4308
# else
4309
# if (XXH_VECTOR == XXH_AVX512)
4310
# define XXH_PREFETCH_DIST 512
4311
# else
4312
# define XXH_PREFETCH_DIST 384
4313
# endif
4314
# endif /* __clang__ */
4315
#endif /* XXH_PREFETCH_DIST */
4316
4317
/*
4318
* XXH3_accumulate()
4319
* Loops over XXH3_accumulate_512().
4320
* Assumption: nbStripes will not overflow the secret size
4321
*/
4322
XXH_FORCE_INLINE void
4323
XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
4324
const xxh_u8* XXH_RESTRICT input,
4325
const xxh_u8* XXH_RESTRICT secret,
4326
size_t nbStripes,
4327
XXH3_f_accumulate_512 f_acc512)
4328
{
4329
size_t n;
4330
for (n = 0; n < nbStripes; n++ ) {
4331
const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
4332
XXH_PREFETCH(in + XXH_PREFETCH_DIST);
4333
f_acc512(acc,
4334
in,
4335
secret + n*XXH_SECRET_CONSUME_RATE);
4336
}
4337
}
4338
4339
XXH_FORCE_INLINE void
4340
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
4341
const xxh_u8* XXH_RESTRICT input, size_t len,
4342
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4343
XXH3_f_accumulate_512 f_acc512,
4344
XXH3_f_scrambleAcc f_scramble)
4345
{
4346
size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
4347
size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
4348
size_t const nb_blocks = (len - 1) / block_len;
4349
4350
size_t n;
4351
4352
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4353
4354
for (n = 0; n < nb_blocks; n++) {
4355
XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
4356
f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
4357
}
4358
4359
/* last partial block */
4360
XXH_ASSERT(len > XXH_STRIPE_LEN);
4361
{ size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
4362
XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
4363
XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
4364
4365
/* last stripe */
4366
{ const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
4367
#define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
4368
f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
4369
} }
4370
}
4371
4372
XXH_FORCE_INLINE xxh_u64
4373
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
4374
{
4375
return XXH3_mul128_fold64(
4376
acc[0] ^ XXH_readLE64(secret),
4377
acc[1] ^ XXH_readLE64(secret+8) );
4378
}
4379
4380
static XXH64_hash_t
4381
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
4382
{
4383
xxh_u64 result64 = start;
4384
size_t i = 0;
4385
4386
for (i = 0; i < 4; i++) {
4387
result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
4388
#if defined(__clang__) /* Clang */ \
4389
&& (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
4390
&& (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
4391
&& !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
4392
/*
4393
* UGLY HACK:
4394
* Prevent autovectorization on Clang ARMv7-a. Exact same problem as
4395
* the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
4396
* XXH3_64bits, len == 256, Snapdragon 835:
4397
* without hack: 2063.7 MB/s
4398
* with hack: 2560.7 MB/s
4399
*/
4400
__asm__("" : "+r" (result64));
4401
#endif
4402
}
4403
4404
return XXH3_avalanche(result64);
4405
}
4406
4407
#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
4408
XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
4409
4410
XXH_FORCE_INLINE XXH64_hash_t
4411
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
4412
const void* XXH_RESTRICT secret, size_t secretSize,
4413
XXH3_f_accumulate_512 f_acc512,
4414
XXH3_f_scrambleAcc f_scramble)
4415
{
4416
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4417
4418
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
4419
4420
/* converge into final hash */
4421
XXH_STATIC_ASSERT(sizeof(acc) == 64);
4422
/* do not align on 8, so that the secret is different from the accumulator */
4423
#define XXH_SECRET_MERGEACCS_START 11
4424
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4425
return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
4426
}
4427
4428
/*
4429
* It's important for performance that XXH3_hashLong is not inlined.
4430
*/
4431
XXH_NO_INLINE XXH64_hash_t
4432
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
4433
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4434
{
4435
(void)seed64;
4436
return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
4437
}
4438
4439
/*
4440
* It's important for performance that XXH3_hashLong is not inlined.
4441
* Since the function is not inlined, the compiler may not be able to understand that,
4442
* in some scenarios, its `secret` argument is actually a compile time constant.
4443
* This variant enforces that the compiler can detect that,
4444
* and uses this opportunity to streamline the generated code for better performance.
4445
*/
4446
XXH_NO_INLINE XXH64_hash_t
4447
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
4448
XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4449
{
4450
(void)seed64; (void)secret; (void)secretLen;
4451
return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
4452
}
4453
4454
/*
4455
* XXH3_hashLong_64b_withSeed():
4456
* Generate a custom key based on alteration of default XXH3_kSecret with the seed,
4457
* and then use this key for long mode hashing.
4458
*
4459
* This operation is decently fast but nonetheless costs a little bit of time.
4460
* Try to avoid it whenever possible (typically when seed==0).
4461
*
4462
* It's important for performance that XXH3_hashLong is not inlined. Not sure
4463
* why (uop cache maybe?), but the difference is large and easily measurable.
4464
*/
4465
XXH_FORCE_INLINE XXH64_hash_t
4466
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
4467
XXH64_hash_t seed,
4468
XXH3_f_accumulate_512 f_acc512,
4469
XXH3_f_scrambleAcc f_scramble,
4470
XXH3_f_initCustomSecret f_initSec)
4471
{
4472
if (seed == 0)
4473
return XXH3_hashLong_64b_internal(input, len,
4474
XXH3_kSecret, sizeof(XXH3_kSecret),
4475
f_acc512, f_scramble);
4476
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4477
f_initSec(secret, seed);
4478
return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
4479
f_acc512, f_scramble);
4480
}
4481
}
4482
4483
/*
4484
* It's important for performance that XXH3_hashLong is not inlined.
4485
*/
4486
XXH_NO_INLINE XXH64_hash_t
4487
XXH3_hashLong_64b_withSeed(const void* input, size_t len,
4488
XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
4489
{
4490
(void)secret; (void)secretLen;
4491
return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
4492
XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4493
}
4494
4495
4496
typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
4497
XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
4498
4499
XXH_FORCE_INLINE XXH64_hash_t
4500
XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
4501
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4502
XXH3_hashLong64_f f_hashLong)
4503
{
4504
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4505
/*
4506
* If an action is to be taken if `secretLen` condition is not respected,
4507
* it should be done here.
4508
* For now, it's a contract pre-condition.
4509
* Adding a check and a branch here would cost performance at every hash.
4510
* Also, note that function signature doesn't offer room to return an error.
4511
*/
4512
if (len <= 16)
4513
return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4514
if (len <= 128)
4515
return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4516
if (len <= XXH3_MIDSIZE_MAX)
4517
return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4518
return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
4519
}
4520
4521
4522
/* === Public entry point === */
4523
4524
/*! @ingroup xxh3_family */
4525
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
4526
{
4527
return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
4528
}
4529
4530
/*! @ingroup xxh3_family */
4531
XXH_PUBLIC_API XXH64_hash_t
4532
XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4533
{
4534
return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
4535
}
4536
4537
/*! @ingroup xxh3_family */
4538
XXH_PUBLIC_API XXH64_hash_t
4539
XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4540
{
4541
return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
4542
}
4543
4544
4545
/* === XXH3 streaming === */
4546
4547
/*
4548
* Malloc's a pointer that is always aligned to align.
4549
*
4550
* This must be freed with `XXH_alignedFree()`.
4551
*
4552
* malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
4553
* alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
4554
* or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
4555
*
4556
* This underalignment previously caused a rather obvious crash which went
4557
* completely unnoticed due to XXH3_createState() not actually being tested.
4558
* Credit to RedSpah for noticing this bug.
4559
*
4560
* The alignment is done manually: Functions like posix_memalign or _mm_malloc
4561
* are avoided: To maintain portability, we would have to write a fallback
4562
* like this anyways, and besides, testing for the existence of library
4563
* functions without relying on external build tools is impossible.
4564
*
4565
* The method is simple: Overallocate, manually align, and store the offset
4566
* to the original behind the returned pointer.
4567
*
4568
* Align must be a power of 2 and 8 <= align <= 128.
4569
*/
4570
static void* XXH_alignedMalloc(size_t s, size_t align)
4571
{
4572
XXH_ASSERT(align <= 128 && align >= 8); /* range check */
4573
XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
4574
XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
4575
{ /* Overallocate to make room for manual realignment and an offset byte */
4576
xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
4577
if (base != NULL) {
4578
/*
4579
* Get the offset needed to align this pointer.
4580
*
4581
* Even if the returned pointer is aligned, there will always be
4582
* at least one byte to store the offset to the original pointer.
4583
*/
4584
size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
4585
/* Add the offset for the now-aligned pointer */
4586
xxh_u8* ptr = base + offset;
4587
4588
XXH_ASSERT((size_t)ptr % align == 0);
4589
4590
/* Store the offset immediately before the returned pointer. */
4591
ptr[-1] = (xxh_u8)offset;
4592
return ptr;
4593
}
4594
return NULL;
4595
}
4596
}
4597
/*
4598
* Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
4599
* normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
4600
*/
4601
static void XXH_alignedFree(void* p)
4602
{
4603
if (p != NULL) {
4604
xxh_u8* ptr = (xxh_u8*)p;
4605
/* Get the offset byte we added in XXH_malloc. */
4606
xxh_u8 offset = ptr[-1];
4607
/* Free the original malloc'd pointer */
4608
xxh_u8* base = ptr - offset;
4609
XXH_free(base);
4610
}
4611
}
4612
/*! @ingroup xxh3_family */
4613
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
4614
{
4615
XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
4616
if (state==NULL) return NULL;
4617
XXH3_INITSTATE(state);
4618
return state;
4619
}
4620
4621
/*! @ingroup xxh3_family */
4622
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
4623
{
4624
XXH_alignedFree(statePtr);
4625
return XXH_OK;
4626
}
4627
4628
/*! @ingroup xxh3_family */
4629
XXH_PUBLIC_API void
4630
XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
4631
{
4632
memcpy(dst_state, src_state, sizeof(*dst_state));
4633
}
4634
4635
static void
4636
XXH3_reset_internal(XXH3_state_t* statePtr,
4637
XXH64_hash_t seed,
4638
const void* secret, size_t secretSize)
4639
{
4640
size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
4641
size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
4642
XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
4643
XXH_ASSERT(statePtr != NULL);
4644
/* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
4645
memset((char*)statePtr + initStart, 0, initLength);
4646
statePtr->acc[0] = XXH_PRIME32_3;
4647
statePtr->acc[1] = XXH_PRIME64_1;
4648
statePtr->acc[2] = XXH_PRIME64_2;
4649
statePtr->acc[3] = XXH_PRIME64_3;
4650
statePtr->acc[4] = XXH_PRIME64_4;
4651
statePtr->acc[5] = XXH_PRIME32_2;
4652
statePtr->acc[6] = XXH_PRIME64_5;
4653
statePtr->acc[7] = XXH_PRIME32_1;
4654
statePtr->seed = seed;
4655
statePtr->extSecret = (const unsigned char*)secret;
4656
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4657
statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
4658
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
4659
}
4660
4661
/*! @ingroup xxh3_family */
4662
XXH_PUBLIC_API XXH_errorcode
4663
XXH3_64bits_reset(XXH3_state_t* statePtr)
4664
{
4665
if (statePtr == NULL) return XXH_ERROR;
4666
XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4667
return XXH_OK;
4668
}
4669
4670
/*! @ingroup xxh3_family */
4671
XXH_PUBLIC_API XXH_errorcode
4672
XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4673
{
4674
if (statePtr == NULL) return XXH_ERROR;
4675
XXH3_reset_internal(statePtr, 0, secret, secretSize);
4676
if (secret == NULL) return XXH_ERROR;
4677
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4678
return XXH_OK;
4679
}
4680
4681
/*! @ingroup xxh3_family */
4682
XXH_PUBLIC_API XXH_errorcode
4683
XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4684
{
4685
if (statePtr == NULL) return XXH_ERROR;
4686
if (seed==0) return XXH3_64bits_reset(statePtr);
4687
if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
4688
XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4689
return XXH_OK;
4690
}
4691
4692
/* Note : when XXH3_consumeStripes() is invoked,
4693
* there must be a guarantee that at least one more byte must be consumed from input
4694
* so that the function can blindly consume all stripes using the "normal" secret segment */
4695
XXH_FORCE_INLINE void
4696
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4697
size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4698
const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4699
const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4700
XXH3_f_accumulate_512 f_acc512,
4701
XXH3_f_scrambleAcc f_scramble)
4702
{
4703
XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
4704
XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4705
if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
4706
/* need a scrambling operation */
4707
size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4708
size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4709
XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4710
f_scramble(acc, secret + secretLimit);
4711
XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4712
*nbStripesSoFarPtr = nbStripesAfterBlock;
4713
} else {
4714
XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4715
*nbStripesSoFarPtr += nbStripes;
4716
}
4717
}
4718
4719
/*
4720
* Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4721
*/
4722
XXH_FORCE_INLINE XXH_errorcode
4723
XXH3_update(XXH3_state_t* state,
4724
const xxh_u8* input, size_t len,
4725
XXH3_f_accumulate_512 f_acc512,
4726
XXH3_f_scrambleAcc f_scramble)
4727
{
4728
if (input==NULL)
4729
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
4730
return XXH_OK;
4731
#else
4732
return XXH_ERROR;
4733
#endif
4734
4735
{ const xxh_u8* const bEnd = input + len;
4736
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4737
4738
state->totalLen += len;
4739
XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
4740
4741
if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
4742
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4743
state->bufferedSize += (XXH32_hash_t)len;
4744
return XXH_OK;
4745
}
4746
/* total input is now > XXH3_INTERNALBUFFER_SIZE */
4747
4748
#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4749
XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
4750
4751
/*
4752
* Internal buffer is partially filled (always, except at beginning)
4753
* Complete it, then consume it.
4754
*/
4755
if (state->bufferedSize) {
4756
size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4757
XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4758
input += loadSize;
4759
XXH3_consumeStripes(state->acc,
4760
&state->nbStripesSoFar, state->nbStripesPerBlock,
4761
state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4762
secret, state->secretLimit,
4763
f_acc512, f_scramble);
4764
state->bufferedSize = 0;
4765
}
4766
XXH_ASSERT(input < bEnd);
4767
4768
/* Consume input by a multiple of internal buffer size */
4769
if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) {
4770
const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4771
do {
4772
XXH3_consumeStripes(state->acc,
4773
&state->nbStripesSoFar, state->nbStripesPerBlock,
4774
input, XXH3_INTERNALBUFFER_STRIPES,
4775
secret, state->secretLimit,
4776
f_acc512, f_scramble);
4777
input += XXH3_INTERNALBUFFER_SIZE;
4778
} while (input<limit);
4779
/* for last partial stripe */
4780
memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4781
}
4782
XXH_ASSERT(input < bEnd);
4783
4784
/* Some remaining input (always) : buffer it */
4785
XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4786
state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4787
}
4788
4789
return XXH_OK;
4790
}
4791
4792
/*! @ingroup xxh3_family */
4793
XXH_PUBLIC_API XXH_errorcode
4794
XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4795
{
4796
return XXH3_update(state, (const xxh_u8*)input, len,
4797
XXH3_accumulate_512, XXH3_scrambleAcc);
4798
}
4799
4800
4801
XXH_FORCE_INLINE void
4802
XXH3_digest_long (XXH64_hash_t* acc,
4803
const XXH3_state_t* state,
4804
const unsigned char* secret)
4805
{
4806
/*
4807
* Digest on a local copy. This way, the state remains unaltered, and it can
4808
* continue ingesting more input afterwards.
4809
*/
4810
memcpy(acc, state->acc, sizeof(state->acc));
4811
if (state->bufferedSize >= XXH_STRIPE_LEN) {
4812
size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4813
size_t nbStripesSoFar = state->nbStripesSoFar;
4814
XXH3_consumeStripes(acc,
4815
&nbStripesSoFar, state->nbStripesPerBlock,
4816
state->buffer, nbStripes,
4817
secret, state->secretLimit,
4818
XXH3_accumulate_512, XXH3_scrambleAcc);
4819
/* last stripe */
4820
XXH3_accumulate_512(acc,
4821
state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4822
secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4823
} else { /* bufferedSize < XXH_STRIPE_LEN */
4824
xxh_u8 lastStripe[XXH_STRIPE_LEN];
4825
size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4826
XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
4827
memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4828
memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4829
XXH3_accumulate_512(acc,
4830
lastStripe,
4831
secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4832
}
4833
}
4834
4835
/*! @ingroup xxh3_family */
4836
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4837
{
4838
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4839
if (state->totalLen > XXH3_MIDSIZE_MAX) {
4840
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4841
XXH3_digest_long(acc, state, secret);
4842
return XXH3_mergeAccs(acc,
4843
secret + XXH_SECRET_MERGEACCS_START,
4844
(xxh_u64)state->totalLen * XXH_PRIME64_1);
4845
}
4846
/* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4847
if (state->seed)
4848
return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4849
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4850
secret, state->secretLimit + XXH_STRIPE_LEN);
4851
}
4852
4853
4854
#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
4855
4856
/*! @ingroup xxh3_family */
4857
XXH_PUBLIC_API void
4858
XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize)
4859
{
4860
XXH_ASSERT(secretBuffer != NULL);
4861
if (customSeedSize == 0) {
4862
memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4863
return;
4864
}
4865
XXH_ASSERT(customSeed != NULL);
4866
4867
{ size_t const segmentSize = sizeof(XXH128_hash_t);
4868
size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize;
4869
XXH128_canonical_t scrambler;
4870
XXH64_hash_t seeds[12];
4871
size_t segnb;
4872
XXH_ASSERT(nbSegments == 12);
4873
XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */
4874
XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
4875
4876
/*
4877
* Copy customSeed to seeds[], truncating or repeating as necessary.
4878
*/
4879
{ size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds));
4880
size_t filled = toFill;
4881
memcpy(seeds, customSeed, toFill);
4882
while (filled < sizeof(seeds)) {
4883
toFill = XXH_MIN(filled, sizeof(seeds) - filled);
4884
memcpy((char*)seeds + filled, seeds, toFill);
4885
filled += toFill;
4886
} }
4887
4888
/* generate secret */
4889
memcpy(secretBuffer, &scrambler, sizeof(scrambler));
4890
for (segnb=1; segnb < nbSegments; segnb++) {
4891
size_t const segmentStart = segnb * segmentSize;
4892
XXH128_canonical_t segment;
4893
XXH128_canonicalFromHash(&segment,
4894
XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) );
4895
memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment));
4896
} }
4897
}
4898
4899
4900
/* ==========================================
4901
* XXH3 128 bits (a.k.a XXH128)
4902
* ==========================================
4903
* XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4904
* even without counting the significantly larger output size.
4905
*
4906
* For example, extra steps are taken to avoid the seed-dependent collisions
4907
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4908
*
4909
* This strength naturally comes at the cost of some speed, especially on short
4910
* lengths. Note that longer hashes are about as fast as the 64-bit version
4911
* due to it using only a slight modification of the 64-bit loop.
4912
*
4913
* XXH128 is also more oriented towards 64-bit machines. It is still extremely
4914
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4915
*/
4916
4917
XXH_FORCE_INLINE XXH128_hash_t
4918
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4919
{
4920
/* A doubled version of 1to3_64b with different constants. */
4921
XXH_ASSERT(input != NULL);
4922
XXH_ASSERT(1 <= len && len <= 3);
4923
XXH_ASSERT(secret != NULL);
4924
/*
4925
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4926
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4927
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4928
*/
4929
{ xxh_u8 const c1 = input[0];
4930
xxh_u8 const c2 = input[len >> 1];
4931
xxh_u8 const c3 = input[len - 1];
4932
xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
4933
| ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
4934
xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
4935
xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4936
xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
4937
xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
4938
xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
4939
XXH128_hash_t h128;
4940
h128.low64 = XXH64_avalanche(keyed_lo);
4941
h128.high64 = XXH64_avalanche(keyed_hi);
4942
return h128;
4943
}
4944
}
4945
4946
XXH_FORCE_INLINE XXH128_hash_t
4947
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4948
{
4949
XXH_ASSERT(input != NULL);
4950
XXH_ASSERT(secret != NULL);
4951
XXH_ASSERT(4 <= len && len <= 8);
4952
seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
4953
{ xxh_u32 const input_lo = XXH_readLE32(input);
4954
xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
4955
xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
4956
xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
4957
xxh_u64 const keyed = input_64 ^ bitflip;
4958
4959
/* Shift len to the left to ensure it is even, this avoids even multiplies. */
4960
XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
4961
4962
m128.high64 += (m128.low64 << 1);
4963
m128.low64 ^= (m128.high64 >> 3);
4964
4965
m128.low64 = XXH_xorshift64(m128.low64, 35);
4966
m128.low64 *= 0x9FB21C651E98DF25ULL;
4967
m128.low64 = XXH_xorshift64(m128.low64, 28);
4968
m128.high64 = XXH3_avalanche(m128.high64);
4969
return m128;
4970
}
4971
}
4972
4973
XXH_FORCE_INLINE XXH128_hash_t
4974
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4975
{
4976
XXH_ASSERT(input != NULL);
4977
XXH_ASSERT(secret != NULL);
4978
XXH_ASSERT(9 <= len && len <= 16);
4979
{ xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
4980
xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
4981
xxh_u64 const input_lo = XXH_readLE64(input);
4982
xxh_u64 input_hi = XXH_readLE64(input + len - 8);
4983
XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
4984
/*
4985
* Put len in the middle of m128 to ensure that the length gets mixed to
4986
* both the low and high bits in the 128x64 multiply below.
4987
*/
4988
m128.low64 += (xxh_u64)(len - 1) << 54;
4989
input_hi ^= bitfliph;
4990
/*
4991
* Add the high 32 bits of input_hi to the high 32 bits of m128, then
4992
* add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
4993
* the high 64 bits of m128.
4994
*
4995
* The best approach to this operation is different on 32-bit and 64-bit.
4996
*/
4997
if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
4998
/*
4999
* 32-bit optimized version, which is more readable.
5000
*
5001
* On 32-bit, it removes an ADC and delays a dependency between the two
5002
* halves of m128.high64, but it generates an extra mask on 64-bit.
5003
*/
5004
m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
5005
} else {
5006
/*
5007
* 64-bit optimized (albeit more confusing) version.
5008
*
5009
* Uses some properties of addition and multiplication to remove the mask:
5010
*
5011
* Let:
5012
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
5013
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
5014
* c = XXH_PRIME32_2
5015
*
5016
* a + (b * c)
5017
* Inverse Property: x + y - x == y
5018
* a + (b * (1 + c - 1))
5019
* Distributive Property: x * (y + z) == (x * y) + (x * z)
5020
* a + (b * 1) + (b * (c - 1))
5021
* Identity Property: x * 1 == x
5022
* a + b + (b * (c - 1))
5023
*
5024
* Substitute a, b, and c:
5025
* input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5026
*
5027
* Since input_hi.hi + input_hi.lo == input_hi, we get this:
5028
* input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5029
*/
5030
m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
5031
}
5032
/* m128 ^= XXH_swap64(m128 >> 64); */
5033
m128.low64 ^= XXH_swap64(m128.high64);
5034
5035
{ /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
5036
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
5037
h128.high64 += m128.high64 * XXH_PRIME64_2;
5038
5039
h128.low64 = XXH3_avalanche(h128.low64);
5040
h128.high64 = XXH3_avalanche(h128.high64);
5041
return h128;
5042
} }
5043
}
5044
5045
/*
5046
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
5047
*/
5048
XXH_FORCE_INLINE XXH128_hash_t
5049
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5050
{
5051
XXH_ASSERT(len <= 16);
5052
{ if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
5053
if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
5054
if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
5055
{ XXH128_hash_t h128;
5056
xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
5057
xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
5058
h128.low64 = XXH64_avalanche(seed ^ bitflipl);
5059
h128.high64 = XXH64_avalanche( seed ^ bitfliph);
5060
return h128;
5061
} }
5062
}
5063
5064
/*
5065
* A bit slower than XXH3_mix16B, but handles multiply by zero better.
5066
*/
5067
XXH_FORCE_INLINE XXH128_hash_t
5068
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
5069
const xxh_u8* secret, XXH64_hash_t seed)
5070
{
5071
acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
5072
acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
5073
acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
5074
acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
5075
return acc;
5076
}
5077
5078
5079
XXH_FORCE_INLINE XXH128_hash_t
5080
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5081
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5082
XXH64_hash_t seed)
5083
{
5084
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5085
XXH_ASSERT(16 < len && len <= 128);
5086
5087
{ XXH128_hash_t acc;
5088
acc.low64 = len * XXH_PRIME64_1;
5089
acc.high64 = 0;
5090
if (len > 32) {
5091
if (len > 64) {
5092
if (len > 96) {
5093
acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
5094
}
5095
acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
5096
}
5097
acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
5098
}
5099
acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
5100
{ XXH128_hash_t h128;
5101
h128.low64 = acc.low64 + acc.high64;
5102
h128.high64 = (acc.low64 * XXH_PRIME64_1)
5103
+ (acc.high64 * XXH_PRIME64_4)
5104
+ ((len - seed) * XXH_PRIME64_2);
5105
h128.low64 = XXH3_avalanche(h128.low64);
5106
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5107
return h128;
5108
}
5109
}
5110
}
5111
5112
XXH_NO_INLINE XXH128_hash_t
5113
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5114
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5115
XXH64_hash_t seed)
5116
{
5117
XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5118
XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
5119
5120
{ XXH128_hash_t acc;
5121
int const nbRounds = (int)len / 32;
5122
int i;
5123
acc.low64 = len * XXH_PRIME64_1;
5124
acc.high64 = 0;
5125
for (i=0; i<4; i++) {
5126
acc = XXH128_mix32B(acc,
5127
input + (32 * i),
5128
input + (32 * i) + 16,
5129
secret + (32 * i),
5130
seed);
5131
}
5132
acc.low64 = XXH3_avalanche(acc.low64);
5133
acc.high64 = XXH3_avalanche(acc.high64);
5134
XXH_ASSERT(nbRounds >= 4);
5135
for (i=4 ; i < nbRounds; i++) {
5136
acc = XXH128_mix32B(acc,
5137
input + (32 * i),
5138
input + (32 * i) + 16,
5139
secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
5140
seed);
5141
}
5142
/* last bytes */
5143
acc = XXH128_mix32B(acc,
5144
input + len - 16,
5145
input + len - 32,
5146
secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
5147
0ULL - seed);
5148
5149
{ XXH128_hash_t h128;
5150
h128.low64 = acc.low64 + acc.high64;
5151
h128.high64 = (acc.low64 * XXH_PRIME64_1)
5152
+ (acc.high64 * XXH_PRIME64_4)
5153
+ ((len - seed) * XXH_PRIME64_2);
5154
h128.low64 = XXH3_avalanche(h128.low64);
5155
h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5156
return h128;
5157
}
5158
}
5159
}
5160
5161
XXH_FORCE_INLINE XXH128_hash_t
5162
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
5163
const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5164
XXH3_f_accumulate_512 f_acc512,
5165
XXH3_f_scrambleAcc f_scramble)
5166
{
5167
XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
5168
5169
XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
5170
5171
/* converge into final hash */
5172
XXH_STATIC_ASSERT(sizeof(acc) == 64);
5173
XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5174
{ XXH128_hash_t h128;
5175
h128.low64 = XXH3_mergeAccs(acc,
5176
secret + XXH_SECRET_MERGEACCS_START,
5177
(xxh_u64)len * XXH_PRIME64_1);
5178
h128.high64 = XXH3_mergeAccs(acc,
5179
secret + secretSize
5180
- sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5181
~((xxh_u64)len * XXH_PRIME64_2));
5182
return h128;
5183
}
5184
}
5185
5186
/*
5187
* It's important for performance that XXH3_hashLong is not inlined.
5188
*/
5189
XXH_NO_INLINE XXH128_hash_t
5190
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
5191
XXH64_hash_t seed64,
5192
const void* XXH_RESTRICT secret, size_t secretLen)
5193
{
5194
(void)seed64; (void)secret; (void)secretLen;
5195
return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
5196
XXH3_accumulate_512, XXH3_scrambleAcc);
5197
}
5198
5199
/*
5200
* It's important for performance that XXH3_hashLong is not inlined.
5201
*/
5202
XXH_NO_INLINE XXH128_hash_t
5203
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
5204
XXH64_hash_t seed64,
5205
const void* XXH_RESTRICT secret, size_t secretLen)
5206
{
5207
(void)seed64;
5208
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
5209
XXH3_accumulate_512, XXH3_scrambleAcc);
5210
}
5211
5212
XXH_FORCE_INLINE XXH128_hash_t
5213
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
5214
XXH64_hash_t seed64,
5215
XXH3_f_accumulate_512 f_acc512,
5216
XXH3_f_scrambleAcc f_scramble,
5217
XXH3_f_initCustomSecret f_initSec)
5218
{
5219
if (seed64 == 0)
5220
return XXH3_hashLong_128b_internal(input, len,
5221
XXH3_kSecret, sizeof(XXH3_kSecret),
5222
f_acc512, f_scramble);
5223
{ XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5224
f_initSec(secret, seed64);
5225
return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
5226
f_acc512, f_scramble);
5227
}
5228
}
5229
5230
/*
5231
* It's important for performance that XXH3_hashLong is not inlined.
5232
*/
5233
XXH_NO_INLINE XXH128_hash_t
5234
XXH3_hashLong_128b_withSeed(const void* input, size_t len,
5235
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
5236
{
5237
(void)secret; (void)secretLen;
5238
return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
5239
XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
5240
}
5241
5242
typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
5243
XXH64_hash_t, const void* XXH_RESTRICT, size_t);
5244
5245
XXH_FORCE_INLINE XXH128_hash_t
5246
XXH3_128bits_internal(const void* input, size_t len,
5247
XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
5248
XXH3_hashLong128_f f_hl128)
5249
{
5250
XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
5251
/*
5252
* If an action is to be taken if `secret` conditions are not respected,
5253
* it should be done here.
5254
* For now, it's a contract pre-condition.
5255
* Adding a check and a branch here would cost performance at every hash.
5256
*/
5257
if (len <= 16)
5258
return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
5259
if (len <= 128)
5260
return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5261
if (len <= XXH3_MIDSIZE_MAX)
5262
return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5263
return f_hl128(input, len, seed64, secret, secretLen);
5264
}
5265
5266
5267
/* === Public XXH128 API === */
5268
5269
/*! @ingroup xxh3_family */
5270
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
5271
{
5272
return XXH3_128bits_internal(input, len, 0,
5273
XXH3_kSecret, sizeof(XXH3_kSecret),
5274
XXH3_hashLong_128b_default);
5275
}
5276
5277
/*! @ingroup xxh3_family */
5278
XXH_PUBLIC_API XXH128_hash_t
5279
XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
5280
{
5281
return XXH3_128bits_internal(input, len, 0,
5282
(const xxh_u8*)secret, secretSize,
5283
XXH3_hashLong_128b_withSecret);
5284
}
5285
5286
/*! @ingroup xxh3_family */
5287
XXH_PUBLIC_API XXH128_hash_t
5288
XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
5289
{
5290
return XXH3_128bits_internal(input, len, seed,
5291
XXH3_kSecret, sizeof(XXH3_kSecret),
5292
XXH3_hashLong_128b_withSeed);
5293
}
5294
5295
/*! @ingroup xxh3_family */
5296
XXH_PUBLIC_API XXH128_hash_t
5297
XXH128(const void* input, size_t len, XXH64_hash_t seed)
5298
{
5299
return XXH3_128bits_withSeed(input, len, seed);
5300
}
5301
5302
5303
/* === XXH3 128-bit streaming === */
5304
5305
/*
5306
* All the functions are actually the same as for 64-bit streaming variant.
5307
* The only difference is the finalizatiom routine.
5308
*/
5309
5310
/*! @ingroup xxh3_family */
5311
XXH_PUBLIC_API XXH_errorcode
5312
XXH3_128bits_reset(XXH3_state_t* statePtr)
5313
{
5314
if (statePtr == NULL) return XXH_ERROR;
5315
XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
5316
return XXH_OK;
5317
}
5318
5319
/*! @ingroup xxh3_family */
5320
XXH_PUBLIC_API XXH_errorcode
5321
XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
5322
{
5323
if (statePtr == NULL) return XXH_ERROR;
5324
XXH3_reset_internal(statePtr, 0, secret, secretSize);
5325
if (secret == NULL) return XXH_ERROR;
5326
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
5327
return XXH_OK;
5328
}
5329
5330
/*! @ingroup xxh3_family */
5331
XXH_PUBLIC_API XXH_errorcode
5332
XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
5333
{
5334
if (statePtr == NULL) return XXH_ERROR;
5335
if (seed==0) return XXH3_128bits_reset(statePtr);
5336
if (seed != statePtr->seed) XXH3_initCustomSecret(statePtr->customSecret, seed);
5337
XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
5338
return XXH_OK;
5339
}
5340
5341
/*! @ingroup xxh3_family */
5342
XXH_PUBLIC_API XXH_errorcode
5343
XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
5344
{
5345
return XXH3_update(state, (const xxh_u8*)input, len,
5346
XXH3_accumulate_512, XXH3_scrambleAcc);
5347
}
5348
5349
/*! @ingroup xxh3_family */
5350
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
5351
{
5352
const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
5353
if (state->totalLen > XXH3_MIDSIZE_MAX) {
5354
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
5355
XXH3_digest_long(acc, state, secret);
5356
XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5357
{ XXH128_hash_t h128;
5358
h128.low64 = XXH3_mergeAccs(acc,
5359
secret + XXH_SECRET_MERGEACCS_START,
5360
(xxh_u64)state->totalLen * XXH_PRIME64_1);
5361
h128.high64 = XXH3_mergeAccs(acc,
5362
secret + state->secretLimit + XXH_STRIPE_LEN
5363
- sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5364
~((xxh_u64)state->totalLen * XXH_PRIME64_2));
5365
return h128;
5366
}
5367
}
5368
/* len <= XXH3_MIDSIZE_MAX : short code */
5369
if (state->seed)
5370
return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
5371
return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
5372
secret, state->secretLimit + XXH_STRIPE_LEN);
5373
}
5374
5375
/* 128-bit utility functions */
5376
5377
#include <string.h> /* memcmp, memcpy */
5378
5379
/* return : 1 is equal, 0 if different */
5380
/*! @ingroup xxh3_family */
5381
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
5382
{
5383
/* note : XXH128_hash_t is compact, it has no padding byte */
5384
return !(memcmp(&h1, &h2, sizeof(h1)));
5385
}
5386
5387
/* This prototype is compatible with stdlib's qsort().
5388
* return : >0 if *h128_1 > *h128_2
5389
* <0 if *h128_1 < *h128_2
5390
* =0 if *h128_1 == *h128_2 */
5391
/*! @ingroup xxh3_family */
5392
XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
5393
{
5394
XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
5395
XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
5396
int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
5397
/* note : bets that, in most cases, hash values are different */
5398
if (hcmp) return hcmp;
5399
return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
5400
}
5401
5402
5403
/*====== Canonical representation ======*/
5404
/*! @ingroup xxh3_family */
5405
XXH_PUBLIC_API void
5406
XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
5407
{
5408
XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
5409
if (XXH_CPU_LITTLE_ENDIAN) {
5410
hash.high64 = XXH_swap64(hash.high64);
5411
hash.low64 = XXH_swap64(hash.low64);
5412
}
5413
memcpy(dst, &hash.high64, sizeof(hash.high64));
5414
memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
5415
}
5416
5417
/*! @ingroup xxh3_family */
5418
XXH_PUBLIC_API XXH128_hash_t
5419
XXH128_hashFromCanonical(const XXH128_canonical_t* src)
5420
{
5421
XXH128_hash_t h;
5422
h.high64 = XXH_readBE64(src);
5423
h.low64 = XXH_readBE64(src->digest + 8);
5424
return h;
5425
}
5426
5427
/* Pop our optimization override from above */
5428
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
5429
&& defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
5430
&& defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
5431
# pragma GCC pop_options
5432
#endif
5433
5434
#endif /* XXH_NO_LONG_LONG */
5435
5436
/*!
5437
* @}
5438
*/
5439
#endif /* XXH_IMPLEMENTATION */
5440
5441
5442
#if defined (__cplusplus)
5443
}
5444
#endif
5445
5446