Path: blob/master/Data Visualization using Python/Sales Performance Analysis.ipynb
3074 views
Kernel: Python 3 (ipykernel)
Case Study: Sales Performance Analysis Objective To analyze and visualize the sales performance of a company over the past year using Matplotlib and Seaborn.
Dataset
Month: The month of the year.
Sales: Total sales in dollars.
Profit: Total profit in dollars.
Region: The region where the sales were made.
In [4]:
Out[4]:
First 5 rows:
Month Sales Profit Region
0 Jan 23000 3000 East
1 Feb 15000 4800 North
2 Jun 27000 6500 North
3 Sep 30000 4000 West
4 Jul 15000 5200 East
Data Summary:
Sales Profit
count 1000.000000 1000.000000
mean 24131.000000 5468.100000
std 5471.908331 1429.165807
min 15000.000000 3000.000000
25% 21000.000000 4500.000000
50% 23000.000000 5200.000000
75% 27000.000000 6500.000000
max 35000.000000 8000.000000
Missing Values:
Month 0
Sales 0
Profit 0
Region 0
dtype: int64
Key Takeaways:
1. Identify seasonal trends in sales.
2. Understand regional variations in sales.
3. Analyze the relationship between sales and profit.
In [ ]: