Path: blob/master/Generative AI for Intelligent Data Handling/Day1 Visualization using Seaborne.ipynb
3079 views
Kernel: Python 3 (ipykernel)
In [1]:
import numpy as np import pandas as pd import matplotlib.pyplot as plt # Generating sample data np.random.seed(0) data = { 'Technology': np.random.choice(['Python', 'Java', 'JavaScript', 'C++', 'Ruby'], 3000), 'Usage': np.random.randint(1, 11, 3000), 'Popularity': np.random.randint(1, 101, 3000), 'Cost': np.random.uniform(100, 1000, 3000), 'Innovation': np.random.randint(1, 6, 3000) } df = pd.DataFrame(data)
In [3]:
# Calculate average usage of each technology tech_usage_mean = df.groupby('Technology')['Usage'].mean().reset_index()
In [5]:
import seaborn as sns # Calculate average usage of each technology tech_usage_mean = df.groupby('Technology')['Usage'].mean().reset_index() # Histogram plt.figure(figsize=(8, 6)) sns.histplot(df['Usage'], bins=20, color='skyblue', edgecolor='black') plt.title('Usage Distribution') plt.xlabel('Usage') plt.ylabel('Frequency') plt.grid(True) plt.show() # Scatter plot plt.figure(figsize=(8, 6)) sns.scatterplot(x='Popularity', y='Cost', data=df, color='orange', alpha=0.5) plt.title('Popularity vs Cost') plt.xlabel('Popularity') plt.ylabel('Cost') plt.grid(True) plt.show() # Bar plot plt.figure(figsize=(10, 6)) sns.countplot(x='Technology', data=df, palette='Greens') plt.title('Technology Distribution') plt.xlabel('Technology') plt.ylabel('Count') plt.xticks(rotation=45) plt.grid(axis='y') plt.show() # Box plot plt.figure(figsize=(8, 6)) sns.boxplot(x=df['Innovation'], orient='h') plt.title('Innovation Distribution') plt.xlabel('Innovation') plt.grid(True) plt.show() # Line chart plt.figure(figsize=(10, 6)) sns.lineplot(x='Technology', y='Usage', data=tech_usage_mean, marker='o') plt.title('Average Usage of Technologies') plt.xlabel('Technology') plt.ylabel('Average Usage') plt.xticks(rotation=45) plt.grid(True) plt.show() # Scatter plot with regression line plt.figure(figsize=(8, 6)) sns.regplot(x='Popularity', y='Cost', data=df, color='purple', scatter_kws={'alpha':0.5}) plt.title('Popularity vs Cost with Regression Line') plt.xlabel('Popularity') plt.ylabel('Cost') plt.grid(True) plt.show()
Out[5]:
In [ ]: