Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
suyashi29
GitHub Repository: suyashi29/python-su
Path: blob/master/ML Classification using Python/Lab work Decision Tree.ipynb
4732 views
Kernel: Python 3 (ipykernel)

Participant Lab Notebook

Decision Tree Classification Lab

Follow the instructions step-by-step and complete all code sections.

#import Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.metrics import accuracy_score, classification_report import pickle
df = pd.read_csv("bodytype.csv") df.head()
# TODO: Complete the EDA tasks: # - df.shape # - df.describe() # - df.isna().sum() # - Histograms # - Scatter plot Height vs Weight coloured by BodyType
# Split Data into test and Train
((80, 4), (20, 4))
# Baseline Decision Tree
#Evaluation and Prediction
## Grid Search
##Grid Search params = { "max_depth": [2, 3, 4, 5], "min_samples_split": [2, 4, 6], "criterion": ["gini", "entropy"] } gs = GridSearchCV(DecisionTreeClassifier(), params, cv=5, n_jobs=-1) gs.fit(X_train, y_train) gs.best_params_
## Save Model
##Predict on New Sample data set sample = pd.DataFrame([{ "HeightCm":165, "WeightKg":70, "Age":30, "ActivityLevelEncoded":1 }]) model.predict(sample)