Path: blob/master/ML/Revise Linear Regression.ipynb
3074 views
Kernel: Python 3
Linear regression is a statistical approach for modelling relationship between a dependent variable with a given set of independent variables
In [2]:
In [3]:
Out[3]:
Linear regression using polyfit
parameters: a=0.80 b=-4.00
regression: a=0.81 b=-3.76, ms error= 0.965
Linear regression using stats.linregress
parameters: a=0.80 b=-4.00
regression: a=0.81 b=-3.76, std error= 0.047
<IPython.core.display.Javascript object>
In [56]:
In [57]:
In [58]:
In [59]:
Out[59]:
'from sklearn.preprocessing import StandardScaler\nsc_X = StandardScaler()\nX_train = sc_X.fit_transform(X_train)\nX_test = sc_X.transform(X_test)\nsc_y = StandardScaler()\ny_train = sc_y.fit_transform(y_train)'
In [60]:
In [61]:
In [62]:
In [63]:
Out[63]:
(13311.00883470787, array([5361.78229353]))
In [64]:
Out[64]:
In [65]:
Out[65]:
MAE 5653.761026635242
MSE 55105733.870278984
RMSE 7423.3236404106065
In [66]:
Out[66]:
R^2 = 0.9829807213710279
In [ ]: