Path: blob/master/Time Forecasting using Python/SASRIMA for Sales Trend.ipynb
3074 views
Kernel: Python 3 (ipykernel)
In [1]:
In [3]:
In [4]:
Out[4]:
In [5]:
Out[5]:
In [6]:
Out[6]:
In [7]:
Out[7]:
ADF Statistic: -2.4205453742120953
p-value: 0.13602139215699055
Critical Values: {'1%': -3.5812576580093696, '5%': -2.9267849124681518, '10%': -2.6015409829867675}
In [8]:
Out[8]:
Best SARIMA Order: (0, 1, 2)
Best Seasonal Order: (0, 1, 1, 12)
In [9]:
Out[9]:
Mean Squared Error: 160.8816737521427
In [10]:
Out[10]:
Forecast Lower Bound Upper Bound
2024-01-31 255.182301 223.817432 286.547169
2024-02-29 252.134771 220.700202 283.569339
2024-03-31 252.661201 221.218659 284.103743
2024-04-30 248.773710 217.331168 280.216253
2024-05-31 239.804385 208.361843 271.246928
2024-06-30 251.329499 219.886957 282.772042
2024-07-31 262.495172 231.052630 293.937715
2024-08-31 271.869192 240.426649 303.311734
2024-09-30 263.120017 231.677474 294.562559
2024-10-31 249.906854 218.464311 281.349396
2024-11-30 263.295768 231.853226 294.738310
2024-12-31 255.825604 224.383061 287.268146