8. K-Means-Customer-Seg.ipynb | 375.1 KB | |
9.Hierarchical-Clustering.ipynb | 98.2 KB | |
Credit card fraud detection.ipynb | 890.9 KB | |
Cust_Segmentation.xlsx | 56.4 KB | |
Decision Tree.ipynb | 489.5 KB | |
Default Modelling using logistic regression.ipynb | 141.4 KB | |
EDAcarsales.ipynb | 167 KB | |
Image recognition using neural network .ipynb | 115.2 KB | |
Introduction to Ensembling methods.ipynb | 896.9 KB | |
K-Means random.ipynb | 73.8 KB | |
K-Means.ipynb | 1 MB | |
K-means Customer Segmentation .ipynb | 220.6 KB | |
KNN with case study.ipynb | 131.9 KB | |
Linear Regression-1.ipynb | 339.1 KB | |
Linear Regression.ipynb | 207.2 KB | |
Logistic Regression.ipynb | 78.3 KB | |
ML Introduction treating a DataSet.ipynb | 576.3 KB | |
Naïve Bayes introduction and example demonstration.ipynb | 137.3 KB | |
Neural Network.ipynb | 135.2 KB | |
Neural Network2.ipynb | 676.9 KB | |
POC CO2 emission.ipynb | 397.4 KB | |
Random Forest Continuous data.ipynb | 60.5 KB | |
Random Forest.ipynb | 243.7 KB | |
SVM.ipynb | 588.4 KB | |
Text Mining.ipynb | 376.2 KB | |
Undersatnding Linear Regression.ipynb | 537 KB | |
Use Case Linear Regression.ipynb | 248.4 KB | |
cars_clus.csv | 17.7 KB | |
dummy | 1 bytes | |
naivebayes.pickle | 8 MB | |