Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/addons/tutorials/optimizers_conditionalgradient.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

TensorFlow Addons Optimizers: ConditionalGradient

Overview

This notebook will demonstrate how to use the Conditional Graident Optimizer from the Addons package.

ConditionalGradient

Constraining the parameters of a neural network has been shown to be beneficial in training because of the underlying regularization effects. Often, parameters are constrained via a soft penalty (which never guarantees the constraint satisfaction) or via a projection operation (which is computationally expensive). Conditional gradient (CG) optimizer, on the other hand, enforces the constraints strictly without the need for an expensive projection step. It works by minimizing a linear approximation of the objective within the constraint set. In this notebook, you demonstrate the appliction of Frobenius norm constraint via the CG optimizer on the MNIST dataset. CG is now available as a tensorflow API. More details of the optimizer are available at https://arxiv.org/pdf/1803.06453.pdf

Setup

!pip install -U tensorflow-addons
import tensorflow as tf import tensorflow_addons as tfa from matplotlib import pyplot as plt
# Hyperparameters batch_size=64 epochs=10

Build the Model

model_1 = tf.keras.Sequential([ tf.keras.layers.Dense(64, input_shape=(784,), activation='relu', name='dense_1'), tf.keras.layers.Dense(64, activation='relu', name='dense_2'), tf.keras.layers.Dense(10, activation='softmax', name='predictions'), ])

Prep the Data

# Load MNIST dataset as NumPy arrays dataset = {} num_validation = 10000 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Preprocess the data x_train = x_train.reshape(-1, 784).astype('float32') / 255 x_test = x_test.reshape(-1, 784).astype('float32') / 255

Define a Custom Callback Function

def frobenius_norm(m): """This function is to calculate the frobenius norm of the matrix of all layer's weight. Args: m: is a list of weights param for each layers. """ total_reduce_sum = 0 for i in range(len(m)): total_reduce_sum = total_reduce_sum + tf.math.reduce_sum(m[i]**2) norm = total_reduce_sum**0.5 return norm
CG_frobenius_norm_of_weight = [] CG_get_weight_norm = tf.keras.callbacks.LambdaCallback( on_epoch_end=lambda batch, logs: CG_frobenius_norm_of_weight.append( frobenius_norm(model_1.trainable_weights).numpy()))

Train and Evaluate: Using CG as Optimizer

Simply replace typical keras optimizers with the new tfa optimizer

# Compile the model model_1.compile( optimizer=tfa.optimizers.ConditionalGradient( learning_rate=0.99949, lambda_=203), # Utilize TFA optimizer loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy']) history_cg = model_1.fit( x_train, y_train, batch_size=batch_size, validation_data=(x_test, y_test), epochs=epochs, callbacks=[CG_get_weight_norm])

Train and Evaluate: Using SGD as Optimizer

model_2 = tf.keras.Sequential([ tf.keras.layers.Dense(64, input_shape=(784,), activation='relu', name='dense_1'), tf.keras.layers.Dense(64, activation='relu', name='dense_2'), tf.keras.layers.Dense(10, activation='softmax', name='predictions'), ])
SGD_frobenius_norm_of_weight = [] SGD_get_weight_norm = tf.keras.callbacks.LambdaCallback( on_epoch_end=lambda batch, logs: SGD_frobenius_norm_of_weight.append( frobenius_norm(model_2.trainable_weights).numpy()))
# Compile the model model_2.compile( optimizer=tf.keras.optimizers.SGD(0.01), # Utilize SGD optimizer loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=['accuracy']) history_sgd = model_2.fit( x_train, y_train, batch_size=batch_size, validation_data=(x_test, y_test), epochs=epochs, callbacks=[SGD_get_weight_norm])

Frobenius Norm of Weights: CG vs SGD

The current implementation of CG optimizer is based on Frobenius Norm, with considering Frobenius Norm as regularizer in the target function. Therefore, you compare CG’s regularized effect with SGD optimizer, which has not imposed Frobenius Norm regularizer.

plt.plot( CG_frobenius_norm_of_weight, color='r', label='CG_frobenius_norm_of_weights') plt.plot( SGD_frobenius_norm_of_weight, color='b', label='SGD_frobenius_norm_of_weights') plt.xlabel('Epoch') plt.ylabel('Frobenius norm of weights') plt.legend(loc=1)

Train and Validation Accuracy: CG vs SGD

plt.plot(history_cg.history['accuracy'], color='r', label='CG_train') plt.plot(history_cg.history['val_accuracy'], color='g', label='CG_test') plt.plot(history_sgd.history['accuracy'], color='pink', label='SGD_train') plt.plot(history_sgd.history['val_accuracy'], color='b', label='SGD_test') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend(loc=4)