Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/federated/tutorials/federated_select.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Sending Different Data To Particular Clients With tff.federated_select

This tutorial demonstrates how to implement custom federated algorithms in TFF that require sending different data to different clients. You may already be familiar with tff.federated_broadcast which sends a single server-placed value to all clients. This tutorial focuses on cases where different parts of a server-based value are sent to different clients. This may be useful for dividing up parts of a model across different clients in order to avoid sending the whole model to any single client.

Let's get started by importing both tensorflow and tensorflow_federated.

#@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated
import tensorflow as tf import tensorflow_federated as tff

Sending Different Values Based On Client Data

Consider the case where we have some server-placed list from which we want to send a few elements to each client based on some client-placed data. For example, a list of strings on the server, and on the clients, a comma-separated list of indices to download. We can implement that as follows:

list_of_strings_type = tff.TensorType(tf.string, [None]) # We only ever send exactly two values to each client. The number of keys per # client must be a fixed number across all clients. number_of_keys_per_client = 2 keys_type = tff.TensorType(tf.int32, [number_of_keys_per_client]) get_size = tff.tf_computation(lambda x: tf.size(x)) select_fn = tff.tf_computation(lambda val, index: tf.gather(val, index)) client_data_type = tf.string # A function from our client data to the indices of the values we'd like to # select from the server. @tff.tf_computation(client_data_type) @tff.check_returns_type(keys_type) def keys_for_client(client_string): # We assume our client data is a single string consisting of exactly three # comma-separated integers indicating which values to grab from the server. split = tf.strings.split([client_string], sep=',')[0] return tf.strings.to_number([split[0], split[1]], tf.int32) @tff.tf_computation(tff.SequenceType(tf.string)) @tff.check_returns_type(tf.string) def concatenate(values): def reduce_fn(acc, item): return tf.cond(tf.math.equal(acc, ''), lambda: item, lambda: tf.strings.join([acc, item], ',')) return values.reduce('', reduce_fn) @tff.federated_computation(tff.type_at_server(list_of_strings_type), tff.type_at_clients(client_data_type)) def broadcast_based_on_client_data(list_of_strings_at_server, client_data): keys_at_clients = tff.federated_map(keys_for_client, client_data) max_key = tff.federated_map(get_size, list_of_strings_at_server) values_at_clients = tff.federated_select(keys_at_clients, max_key, list_of_strings_at_server, select_fn) value_at_clients = tff.federated_map(concatenate, values_at_clients) return value_at_clients

Then we can simulate our computation by providing the server-placed list of strings as well as string data for each client:

client_data = ['0,1', '1,2', '2,0'] broadcast_based_on_client_data(['a', 'b', 'c'], client_data)
[<tf.Tensor: shape=(), dtype=string, numpy=b'a,b'>, <tf.Tensor: shape=(), dtype=string, numpy=b'b,c'>, <tf.Tensor: shape=(), dtype=string, numpy=b'c,a'>]

Sending A Randomized Element To Each Client

Alternatively, it may be useful to send a random portion of the server data to each client. We can implement that by first generating a random key on each client and then following a similar selection process to the one used above:

@tff.tf_computation(tf.int32) @tff.check_returns_type(tff.TensorType(tf.int32, [1])) def get_random_key(max_key): return tf.random.uniform(shape=[1], minval=0, maxval=max_key, dtype=tf.int32) list_of_strings_type = tff.TensorType(tf.string, [None]) get_size = tff.tf_computation(lambda x: tf.size(x)) select_fn = tff.tf_computation(lambda val, index: tf.gather(val, index)) @tff.tf_computation(tff.SequenceType(tf.string)) @tff.check_returns_type(tf.string) def get_last_element(sequence): return sequence.reduce('', lambda _initial_state, val: val) @tff.federated_computation(tff.type_at_server(list_of_strings_type)) def broadcast_random_element(list_of_strings_at_server): max_key_at_server = tff.federated_map(get_size, list_of_strings_at_server) max_key_at_clients = tff.federated_broadcast(max_key_at_server) key_at_clients = tff.federated_map(get_random_key, max_key_at_clients) random_string_sequence_at_clients = tff.federated_select( key_at_clients, max_key_at_server, list_of_strings_at_server, select_fn) # Even though we only passed in a single key, `federated_select` returns a # sequence for each client. We only care about the last (and only) element. random_string_at_clients = tff.federated_map(get_last_element, random_string_sequence_at_clients) return random_string_at_clients

Since our broadcast_random_element function doesn't take in any client-placed data, we have to configure the TFF Simulation Runtime with a default number of clients to use:

tff.backends.native.set_sync_local_cpp_execution_context(default_num_clients=3)

Then we can simulate the selection. We can change default_num_clients above and the list of strings below to generate different results, or simply re-run the computation to generate different random outputs.

broadcast_random_element(tf.convert_to_tensor(['foo', 'bar', 'baz']))