Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/federated/tutorials/simulations.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

High-performance simulations with TFF

This tutorial will describe how to setup high-performance simulations with TFF in a variety of common scenarios.

TODO: b/134543154 - Populate the content, some of the things to cover here:

  • using GPUs in a single-machine setup,

  • multi-machine setup on GCP/GKE, with and without TPUs,

  • interfacing MapReduce-like backends,

  • current limitations and when/how they will be relaxed.

Before we begin

First, make sure your notebook is connected to a backend that has the relevant components (including gRPC dependencies for multi-machine scenarios) compiled.

Now, let's start by loading the MNIST example from the TFF website, and declaring the Python function that will run a small experiment loop over a group of 10 clients.

#@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated
/bin/sh: pip: command not found
import collections import time import tensorflow as tf import tensorflow_federated as tff source, _ = tff.simulation.datasets.emnist.load_data() def map_fn(example): return collections.OrderedDict( x=tf.reshape(example['pixels'], [-1, 784]), y=example['label']) def client_data(n): ds = source.create_tf_dataset_for_client(source.client_ids[n]) return ds.repeat(10).shuffle(500).batch(20).map(map_fn) train_data = [client_data(n) for n in range(10)] element_spec = train_data[0].element_spec def model_fn(): model = tf.keras.models.Sequential([ tf.keras.layers.InputLayer(input_shape=(784,)), tf.keras.layers.Dense(units=10, kernel_initializer='zeros'), tf.keras.layers.Softmax(), ]) return tff.learning.models.from_keras_model( model, input_spec=element_spec, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) trainer = tff.learning.algorithms.build_weighted_fed_avg( model_fn, client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.02)) def evaluate(num_rounds=10): state = trainer.initialize() for _ in range(num_rounds): t1 = time.time() result = trainer.next(state, train_data) state = result.state train_metrics = result.metrics['client_work']['train'] t2 = time.time() print('train metrics {m}, round time {t:.2f} seconds'.format( m=train_metrics, t=t2 - t1))

Single-machine simulations

Now on by default.

evaluate()
train metrics OrderedDict([('sparse_categorical_accuracy', 0.15329218), ('loss', 2.918891), ('num_examples', 9720), ('num_batches', 490)]), round time 4.64 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.18004115), ('loss', 2.7677088), ('num_examples', 9720), ('num_batches', 490)]), round time 2.37 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.21841563), ('loss', 2.511075), ('num_examples', 9720), ('num_batches', 490)]), round time 2.30 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.27160493), ('loss', 2.340346), ('num_examples', 9720), ('num_batches', 490)]), round time 2.25 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.34115225), ('loss', 2.0537064), ('num_examples', 9720), ('num_batches', 490)]), round time 2.27 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.3745885), ('loss', 1.9158486), ('num_examples', 9720), ('num_batches', 490)]), round time 2.21 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.41502059), ('loss', 1.7523248), ('num_examples', 9720), ('num_batches', 490)]), round time 2.19 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.47644034), ('loss', 1.6085855), ('num_examples', 9720), ('num_batches', 490)]), round time 2.20 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.5126543), ('loss', 1.5272282), ('num_examples', 9720), ('num_batches', 490)]), round time 2.27 seconds train metrics OrderedDict([('sparse_categorical_accuracy', 0.5576132), ('loss', 1.393721), ('num_examples', 9720), ('num_batches', 490)]), round time 2.16 seconds

Multi-machine simulations on GCP/GKE, GPUs, TPUs, and beyond...

Coming very soon.