Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/hub/tutorials/movenet.ipynb
25118 views
Kernel: Python 3

Licensed under the Apache License, Version 2.0 (the "License");

# Copyright 2021 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================

MoveNet: Ultra fast and accurate pose detection model.

MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. The model is offered on TF Hub with two variants, known as Lightning and Thunder. Lightning is intended for latency-critical applications, while Thunder is intended for applications that require high accuracy. Both models run faster than real time (30+ FPS) on most modern desktops, laptops, and phones, which proves crucial for live fitness, health, and wellness applications.

drawing

*Images downloaded from Pexels (https://www.pexels.com/)

This Colab walks you through the details of how to load MoveNet, and run inference on the input image and video below.

Note: check out the live demo for how the model works!

Human Pose Estimation with MoveNet

Visualization libraries & Imports

!pip install -q imageio !pip install -q opencv-python !pip install -q git+https://github.com/tensorflow/docs
import tensorflow as tf import tensorflow_hub as hub from tensorflow_docs.vis import embed import numpy as np import cv2 # Import matplotlib libraries from matplotlib import pyplot as plt from matplotlib.collections import LineCollection import matplotlib.patches as patches # Some modules to display an animation using imageio. import imageio from IPython.display import HTML, display
#@title Helper functions for visualization # Dictionary that maps from joint names to keypoint indices. KEYPOINT_DICT = { 'nose': 0, 'left_eye': 1, 'right_eye': 2, 'left_ear': 3, 'right_ear': 4, 'left_shoulder': 5, 'right_shoulder': 6, 'left_elbow': 7, 'right_elbow': 8, 'left_wrist': 9, 'right_wrist': 10, 'left_hip': 11, 'right_hip': 12, 'left_knee': 13, 'right_knee': 14, 'left_ankle': 15, 'right_ankle': 16 } # Maps bones to a matplotlib color name. KEYPOINT_EDGE_INDS_TO_COLOR = { (0, 1): 'm', (0, 2): 'c', (1, 3): 'm', (2, 4): 'c', (0, 5): 'm', (0, 6): 'c', (5, 7): 'm', (7, 9): 'm', (6, 8): 'c', (8, 10): 'c', (5, 6): 'y', (5, 11): 'm', (6, 12): 'c', (11, 12): 'y', (11, 13): 'm', (13, 15): 'm', (12, 14): 'c', (14, 16): 'c' } def _keypoints_and_edges_for_display(keypoints_with_scores, height, width, keypoint_threshold=0.11): """Returns high confidence keypoints and edges for visualization. Args: keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. height: height of the image in pixels. width: width of the image in pixels. keypoint_threshold: minimum confidence score for a keypoint to be visualized. Returns: A (keypoints_xy, edges_xy, edge_colors) containing: * the coordinates of all keypoints of all detected entities; * the coordinates of all skeleton edges of all detected entities; * the colors in which the edges should be plotted. """ keypoints_all = [] keypoint_edges_all = [] edge_colors = [] num_instances, _, _, _ = keypoints_with_scores.shape for idx in range(num_instances): kpts_x = keypoints_with_scores[0, idx, :, 1] kpts_y = keypoints_with_scores[0, idx, :, 0] kpts_scores = keypoints_with_scores[0, idx, :, 2] kpts_absolute_xy = np.stack( [width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1) kpts_above_thresh_absolute = kpts_absolute_xy[ kpts_scores > keypoint_threshold, :] keypoints_all.append(kpts_above_thresh_absolute) for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items(): if (kpts_scores[edge_pair[0]] > keypoint_threshold and kpts_scores[edge_pair[1]] > keypoint_threshold): x_start = kpts_absolute_xy[edge_pair[0], 0] y_start = kpts_absolute_xy[edge_pair[0], 1] x_end = kpts_absolute_xy[edge_pair[1], 0] y_end = kpts_absolute_xy[edge_pair[1], 1] line_seg = np.array([[x_start, y_start], [x_end, y_end]]) keypoint_edges_all.append(line_seg) edge_colors.append(color) if keypoints_all: keypoints_xy = np.concatenate(keypoints_all, axis=0) else: keypoints_xy = np.zeros((0, 17, 2)) if keypoint_edges_all: edges_xy = np.stack(keypoint_edges_all, axis=0) else: edges_xy = np.zeros((0, 2, 2)) return keypoints_xy, edges_xy, edge_colors def draw_prediction_on_image( image, keypoints_with_scores, crop_region=None, close_figure=False, output_image_height=None): """Draws the keypoint predictions on image. Args: image: A numpy array with shape [height, width, channel] representing the pixel values of the input image. keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. crop_region: A dictionary that defines the coordinates of the bounding box of the crop region in normalized coordinates (see the init_crop_region function below for more detail). If provided, this function will also draw the bounding box on the image. output_image_height: An integer indicating the height of the output image. Note that the image aspect ratio will be the same as the input image. Returns: A numpy array with shape [out_height, out_width, channel] representing the image overlaid with keypoint predictions. """ height, width, channel = image.shape aspect_ratio = float(width) / height fig, ax = plt.subplots(figsize=(12 * aspect_ratio, 12)) # To remove the huge white borders fig.tight_layout(pad=0) ax.margins(0) ax.set_yticklabels([]) ax.set_xticklabels([]) plt.axis('off') im = ax.imshow(image) line_segments = LineCollection([], linewidths=(4), linestyle='solid') ax.add_collection(line_segments) # Turn off tick labels scat = ax.scatter([], [], s=60, color='#FF1493', zorder=3) (keypoint_locs, keypoint_edges, edge_colors) = _keypoints_and_edges_for_display( keypoints_with_scores, height, width) line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_edges.shape[0]: line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_locs.shape[0]: scat.set_offsets(keypoint_locs) if crop_region is not None: xmin = max(crop_region['x_min'] * width, 0.0) ymin = max(crop_region['y_min'] * height, 0.0) rec_width = min(crop_region['x_max'], 0.99) * width - xmin rec_height = min(crop_region['y_max'], 0.99) * height - ymin rect = patches.Rectangle( (xmin,ymin),rec_width,rec_height, linewidth=1,edgecolor='b',facecolor='none') ax.add_patch(rect) fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) image_from_plot = image_from_plot.reshape( fig.canvas.get_width_height()[::-1] + (3,)) plt.close(fig) if output_image_height is not None: output_image_width = int(output_image_height / height * width) image_from_plot = cv2.resize( image_from_plot, dsize=(output_image_width, output_image_height), interpolation=cv2.INTER_CUBIC) return image_from_plot def to_gif(images, duration): """Converts image sequence (4D numpy array) to gif.""" imageio.mimsave('./animation.gif', images, duration=duration) return embed.embed_file('./animation.gif') def progress(value, max=100): return HTML(""" <progress value='{value}' max='{max}', style='width: 100%' > {value} </progress> """.format(value=value, max=max))

Load Model from TF hub

model_name = "movenet_lightning" #@param ["movenet_lightning", "movenet_thunder", "movenet_lightning_f16.tflite", "movenet_thunder_f16.tflite", "movenet_lightning_int8.tflite", "movenet_thunder_int8.tflite"] if "tflite" in model_name: if "movenet_lightning_f16" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4?lite-format=tflite input_size = 192 elif "movenet_thunder_f16" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite input_size = 256 elif "movenet_lightning_int8" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/int8/4?lite-format=tflite input_size = 192 elif "movenet_thunder_int8" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/int8/4?lite-format=tflite input_size = 256 else: raise ValueError("Unsupported model name: %s" % model_name) # Initialize the TFLite interpreter interpreter = tf.lite.Interpreter(model_path="model.tflite") interpreter.allocate_tensors() def movenet(input_image): """Runs detection on an input image. Args: input_image: A [1, height, width, 3] tensor represents the input image pixels. Note that the height/width should already be resized and match the expected input resolution of the model before passing into this function. Returns: A [1, 1, 17, 3] float numpy array representing the predicted keypoint coordinates and scores. """ # TF Lite format expects tensor type of uint8. input_image = tf.cast(input_image, dtype=tf.uint8) input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]['index'], input_image.numpy()) # Invoke inference. interpreter.invoke() # Get the model prediction. keypoints_with_scores = interpreter.get_tensor(output_details[0]['index']) return keypoints_with_scores else: if "movenet_lightning" in model_name: module = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4") input_size = 192 elif "movenet_thunder" in model_name: module = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4") input_size = 256 else: raise ValueError("Unsupported model name: %s" % model_name) def movenet(input_image): """Runs detection on an input image. Args: input_image: A [1, height, width, 3] tensor represents the input image pixels. Note that the height/width should already be resized and match the expected input resolution of the model before passing into this function. Returns: A [1, 1, 17, 3] float numpy array representing the predicted keypoint coordinates and scores. """ model = module.signatures['serving_default'] # SavedModel format expects tensor type of int32. input_image = tf.cast(input_image, dtype=tf.int32) # Run model inference. outputs = model(input_image) # Output is a [1, 1, 17, 3] tensor. keypoints_with_scores = outputs['output_0'].numpy() return keypoints_with_scores

Single Image Example

This session demonstrates the minumum working example of running the model on a single image to predict the 17 human keypoints.

Load Input Image

!curl -o input_image.jpeg https://images.pexels.com/photos/4384679/pexels-photo-4384679.jpeg --silent
# Load the input image. image_path = 'input_image.jpeg' image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image)

Run Inference

# Resize and pad the image to keep the aspect ratio and fit the expected size. input_image = tf.expand_dims(image, axis=0) input_image = tf.image.resize_with_pad(input_image, input_size, input_size) # Run model inference. keypoints_with_scores = movenet(input_image) # Visualize the predictions with image. display_image = tf.expand_dims(image, axis=0) display_image = tf.cast(tf.image.resize_with_pad( display_image, 1280, 1280), dtype=tf.int32) output_overlay = draw_prediction_on_image( np.squeeze(display_image.numpy(), axis=0), keypoints_with_scores) plt.figure(figsize=(5, 5)) plt.imshow(output_overlay) _ = plt.axis('off')

Video (Image Sequence) Example

This section demonstrates how to apply intelligent cropping based on detections from the previous frame when the input is a sequence of frames. This allows the model to devote its attention and resources to the main subject, resulting in much better prediction quality without sacrificing the speed.

#@title Cropping Algorithm # Confidence score to determine whether a keypoint prediction is reliable. MIN_CROP_KEYPOINT_SCORE = 0.2 def init_crop_region(image_height, image_width): """Defines the default crop region. The function provides the initial crop region (pads the full image from both sides to make it a square image) when the algorithm cannot reliably determine the crop region from the previous frame. """ if image_width > image_height: box_height = image_width / image_height box_width = 1.0 y_min = (image_height / 2 - image_width / 2) / image_height x_min = 0.0 else: box_height = 1.0 box_width = image_height / image_width y_min = 0.0 x_min = (image_width / 2 - image_height / 2) / image_width return { 'y_min': y_min, 'x_min': x_min, 'y_max': y_min + box_height, 'x_max': x_min + box_width, 'height': box_height, 'width': box_width } def torso_visible(keypoints): """Checks whether there are enough torso keypoints. This function checks whether the model is confident at predicting one of the shoulders/hips which is required to determine a good crop region. """ return ((keypoints[0, 0, KEYPOINT_DICT['left_hip'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_hip'], 2] > MIN_CROP_KEYPOINT_SCORE) and (keypoints[0, 0, KEYPOINT_DICT['left_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE)) def determine_torso_and_body_range( keypoints, target_keypoints, center_y, center_x): """Calculates the maximum distance from each keypoints to the center location. The function returns the maximum distances from the two sets of keypoints: full 17 keypoints and 4 torso keypoints. The returned information will be used to determine the crop size. See determineCropRegion for more detail. """ torso_joints = ['left_shoulder', 'right_shoulder', 'left_hip', 'right_hip'] max_torso_yrange = 0.0 max_torso_xrange = 0.0 for joint in torso_joints: dist_y = abs(center_y - target_keypoints[joint][0]) dist_x = abs(center_x - target_keypoints[joint][1]) if dist_y > max_torso_yrange: max_torso_yrange = dist_y if dist_x > max_torso_xrange: max_torso_xrange = dist_x max_body_yrange = 0.0 max_body_xrange = 0.0 for joint in KEYPOINT_DICT.keys(): if keypoints[0, 0, KEYPOINT_DICT[joint], 2] < MIN_CROP_KEYPOINT_SCORE: continue dist_y = abs(center_y - target_keypoints[joint][0]); dist_x = abs(center_x - target_keypoints[joint][1]); if dist_y > max_body_yrange: max_body_yrange = dist_y if dist_x > max_body_xrange: max_body_xrange = dist_x return [max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange] def determine_crop_region( keypoints, image_height, image_width): """Determines the region to crop the image for the model to run inference on. The algorithm uses the detected joints from the previous frame to estimate the square region that encloses the full body of the target person and centers at the midpoint of two hip joints. The crop size is determined by the distances between each joints and the center point. When the model is not confident with the four torso joint predictions, the function returns a default crop which is the full image padded to square. """ target_keypoints = {} for joint in KEYPOINT_DICT.keys(): target_keypoints[joint] = [ keypoints[0, 0, KEYPOINT_DICT[joint], 0] * image_height, keypoints[0, 0, KEYPOINT_DICT[joint], 1] * image_width ] if torso_visible(keypoints): center_y = (target_keypoints['left_hip'][0] + target_keypoints['right_hip'][0]) / 2; center_x = (target_keypoints['left_hip'][1] + target_keypoints['right_hip'][1]) / 2; (max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange) = determine_torso_and_body_range( keypoints, target_keypoints, center_y, center_x) crop_length_half = np.amax( [max_torso_xrange * 1.9, max_torso_yrange * 1.9, max_body_yrange * 1.2, max_body_xrange * 1.2]) tmp = np.array( [center_x, image_width - center_x, center_y, image_height - center_y]) crop_length_half = np.amin( [crop_length_half, np.amax(tmp)]); crop_corner = [center_y - crop_length_half, center_x - crop_length_half]; if crop_length_half > max(image_width, image_height) / 2: return init_crop_region(image_height, image_width) else: crop_length = crop_length_half * 2; return { 'y_min': crop_corner[0] / image_height, 'x_min': crop_corner[1] / image_width, 'y_max': (crop_corner[0] + crop_length) / image_height, 'x_max': (crop_corner[1] + crop_length) / image_width, 'height': (crop_corner[0] + crop_length) / image_height - crop_corner[0] / image_height, 'width': (crop_corner[1] + crop_length) / image_width - crop_corner[1] / image_width } else: return init_crop_region(image_height, image_width) def crop_and_resize(image, crop_region, crop_size): """Crops and resize the image to prepare for the model input.""" boxes=[[crop_region['y_min'], crop_region['x_min'], crop_region['y_max'], crop_region['x_max']]] output_image = tf.image.crop_and_resize( image, box_indices=[0], boxes=boxes, crop_size=crop_size) return output_image def run_inference(movenet, image, crop_region, crop_size): """Runs model inferece on the cropped region. The function runs the model inference on the cropped region and updates the model output to the original image coordinate system. """ image_height, image_width, _ = image.shape input_image = crop_and_resize( tf.expand_dims(image, axis=0), crop_region, crop_size=crop_size) # Run model inference. keypoints_with_scores = movenet(input_image) # Update the coordinates. for idx in range(17): keypoints_with_scores[0, 0, idx, 0] = ( crop_region['y_min'] * image_height + crop_region['height'] * image_height * keypoints_with_scores[0, 0, idx, 0]) / image_height keypoints_with_scores[0, 0, idx, 1] = ( crop_region['x_min'] * image_width + crop_region['width'] * image_width * keypoints_with_scores[0, 0, idx, 1]) / image_width return keypoints_with_scores

Load Input Image Sequence

!wget -q -O dance.gif https://github.com/tensorflow/tfjs-models/raw/master/pose-detection/assets/dance_input.gif
# Load the input image. image_path = 'dance.gif' image = tf.io.read_file(image_path) image = tf.image.decode_gif(image)

Run Inference with Cropping Algorithm

# Load the input image. num_frames, image_height, image_width, _ = image.shape crop_region = init_crop_region(image_height, image_width) output_images = [] bar = display(progress(0, num_frames-1), display_id=True) for frame_idx in range(num_frames): keypoints_with_scores = run_inference( movenet, image[frame_idx, :, :, :], crop_region, crop_size=[input_size, input_size]) output_images.append(draw_prediction_on_image( image[frame_idx, :, :, :].numpy().astype(np.int32), keypoints_with_scores, crop_region=None, close_figure=True, output_image_height=300)) crop_region = determine_crop_region( keypoints_with_scores, image_height, image_width) bar.update(progress(frame_idx, num_frames-1)) # Prepare gif visualization. output = np.stack(output_images, axis=0) to_gif(output, duration=100)