Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/io/tutorials/bigquery.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

End to end example for BigQuery TensorFlow reader

Overview

This tutorial shows how to use BigQuery TensorFlow reader for training neural network using the Keras sequential API.

Dataset

This tutorial uses the United States Census Income Dataset provided by the UC Irvine Machine Learning Repository. This dataset contains information about people from a 1994 Census database, including age, education, marital status, occupation, and whether they make more than $50,000 a year.

Setup

Set up your GCP project

The following steps are required, regardless of your notebook environment.

  1. Select or create a GCP project.

  2. Make sure that billing is enabled for your project.

  3. Enable the BigQuery Storage API

  4. Enter your project ID in the cell below. Then run the cell to make sure the Cloud SDK uses the right project for all the commands in this notebook.

Note: Jupyter runs lines prefixed with ! as shell commands, and it interpolates Python variables prefixed with $ into these commands.

Install required Packages, and restart runtime

try: # Use the Colab's preinstalled TensorFlow 2.x %tensorflow_version 2.x except: pass
!pip install fastavro !pip install tensorflow-io==0.9.0
!pip install google-cloud-bigquery-storage

Authenticate

from google.colab import auth auth.authenticate_user() print('Authenticated')

Set your PROJECT ID

PROJECT_ID = "<YOUR PROJECT>" #@param {type:"string"} ! gcloud config set project $PROJECT_ID %env GCLOUD_PROJECT=$PROJECT_ID

Import Python libraries, define constants

from __future__ import absolute_import, division, print_function, unicode_literals import os from six.moves import urllib import tempfile import numpy as np import pandas as pd import tensorflow as tf from google.cloud import bigquery from google.api_core.exceptions import GoogleAPIError LOCATION = 'us' # Storage directory DATA_DIR = os.path.join(tempfile.gettempdir(), 'census_data') # Download options. DATA_URL = 'https://storage.googleapis.com/cloud-samples-data/ml-engine/census/data' TRAINING_FILE = 'adult.data.csv' EVAL_FILE = 'adult.test.csv' TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE) EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE) DATASET_ID = 'census_dataset' TRAINING_TABLE_ID = 'census_training_table' EVAL_TABLE_ID = 'census_eval_table' CSV_SCHEMA = [ bigquery.SchemaField("age", "FLOAT64"), bigquery.SchemaField("workclass", "STRING"), bigquery.SchemaField("fnlwgt", "FLOAT64"), bigquery.SchemaField("education", "STRING"), bigquery.SchemaField("education_num", "FLOAT64"), bigquery.SchemaField("marital_status", "STRING"), bigquery.SchemaField("occupation", "STRING"), bigquery.SchemaField("relationship", "STRING"), bigquery.SchemaField("race", "STRING"), bigquery.SchemaField("gender", "STRING"), bigquery.SchemaField("capital_gain", "FLOAT64"), bigquery.SchemaField("capital_loss", "FLOAT64"), bigquery.SchemaField("hours_per_week", "FLOAT64"), bigquery.SchemaField("native_country", "STRING"), bigquery.SchemaField("income_bracket", "STRING"), ] UNUSED_COLUMNS = ["fnlwgt", "education_num"]

Import census data into BigQuery

Define helper methods to load data into BigQuery

def create_bigquery_dataset_if_necessary(dataset_id): # Construct a full Dataset object to send to the API. client = bigquery.Client(project=PROJECT_ID) dataset = bigquery.Dataset(bigquery.dataset.DatasetReference(PROJECT_ID, dataset_id)) dataset.location = LOCATION try: dataset = client.create_dataset(dataset) # API request return True except GoogleAPIError as err: if err.code != 409: # http_client.CONFLICT raise return False
def load_data_into_bigquery(url, table_id): create_bigquery_dataset_if_necessary(DATASET_ID) client = bigquery.Client(project=PROJECT_ID) dataset_ref = client.dataset(DATASET_ID) table_ref = dataset_ref.table(table_id) job_config = bigquery.LoadJobConfig() job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE job_config.source_format = bigquery.SourceFormat.CSV job_config.schema = CSV_SCHEMA load_job = client.load_table_from_uri( url, table_ref, job_config=job_config ) print("Starting job {}".format(load_job.job_id)) load_job.result() # Waits for table load to complete. print("Job finished.") destination_table = client.get_table(table_ref) print("Loaded {} rows.".format(destination_table.num_rows))

Load Census data in BigQuery.

load_data_into_bigquery(TRAINING_URL, TRAINING_TABLE_ID) load_data_into_bigquery(EVAL_URL, EVAL_TABLE_ID)
Starting job 2ceffef8-e6e4-44bb-9e86-3d97b0501187 Job finished. Loaded 32561 rows. Starting job bf66f1b3-2506-408b-9009-c19f4ae9f58a Job finished. Loaded 16278 rows.

Confirm that data was imported

TODO: replace <YOUR PROJECT> with your PROJECT_ID

Note: --use_bqstorage_api will get data using BigQueryStorage API and will make sure that you are authorized to use it. Make sure that it is enabled for your project: https://cloud.google.com/bigquery/docs/reference/storage/#enabling_the_api

%%bigquery --use_bqstorage_api SELECT * FROM `<YOUR PROJECT>.census_dataset.census_training_table` LIMIT 5

##Load census data in TensorFlow DataSet using BigQuery reader

Read and transform cesnus data from BigQuery into TensorFlow DataSet

from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes from tensorflow_io.bigquery import BigQueryClient from tensorflow_io.bigquery import BigQueryReadSession def transform_row(row_dict): # Trim all string tensors trimmed_dict = { column: (tf.strings.strip(tensor) if tensor.dtype == 'string' else tensor) for (column,tensor) in row_dict.items() } # Extract feature column income_bracket = trimmed_dict.pop('income_bracket') # Convert feature column to 0.0/1.0 income_bracket_float = tf.cond(tf.equal(tf.strings.strip(income_bracket), '>50K'), lambda: tf.constant(1.0), lambda: tf.constant(0.0)) return (trimmed_dict, income_bracket_float) def read_bigquery(table_name): tensorflow_io_bigquery_client = BigQueryClient() read_session = tensorflow_io_bigquery_client.read_session( "projects/" + PROJECT_ID, PROJECT_ID, table_name, DATASET_ID, list(field.name for field in CSV_SCHEMA if not field.name in UNUSED_COLUMNS), list(dtypes.double if field.field_type == 'FLOAT64' else dtypes.string for field in CSV_SCHEMA if not field.name in UNUSED_COLUMNS), requested_streams=2) dataset = read_session.parallel_read_rows() transformed_ds = dataset.map(transform_row) return transformed_ds
BATCH_SIZE = 32 training_ds = read_bigquery(TRAINING_TABLE_ID).shuffle(10000).batch(BATCH_SIZE) eval_ds = read_bigquery(EVAL_TABLE_ID).batch(BATCH_SIZE)

##Define feature columns

def get_categorical_feature_values(column): query = 'SELECT DISTINCT TRIM({}) FROM `{}`.{}.{}'.format(column, PROJECT_ID, DATASET_ID, TRAINING_TABLE_ID) client = bigquery.Client(project=PROJECT_ID) dataset_ref = client.dataset(DATASET_ID) job_config = bigquery.QueryJobConfig() query_job = client.query(query, job_config=job_config) result = query_job.to_dataframe() return result.values[:,0]
from tensorflow import feature_column feature_columns = [] # numeric cols for header in ['capital_gain', 'capital_loss', 'hours_per_week']: feature_columns.append(feature_column.numeric_column(header)) # categorical cols for header in ['workclass', 'marital_status', 'occupation', 'relationship', 'race', 'native_country', 'education']: categorical_feature = feature_column.categorical_column_with_vocabulary_list( header, get_categorical_feature_values(header)) categorical_feature_one_hot = feature_column.indicator_column(categorical_feature) feature_columns.append(categorical_feature_one_hot) # bucketized cols age = feature_column.numeric_column('age') age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) feature_columns.append(age_buckets) feature_layer = tf.keras.layers.DenseFeatures(feature_columns)

##Build and train model

Build model

Dense = tf.keras.layers.Dense model = tf.keras.Sequential( [ feature_layer, Dense(100, activation=tf.nn.relu, kernel_initializer='uniform'), Dense(75, activation=tf.nn.relu), Dense(50, activation=tf.nn.relu), Dense(25, activation=tf.nn.relu), Dense(1, activation=tf.nn.sigmoid) ]) # Compile Keras model model.compile( loss='binary_crossentropy', metrics=['accuracy'])

Train model

model.fit(training_ds, epochs=5)
WARNING:tensorflow:Layer sequential is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because it's dtype defaults to floatx. If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4276: IndicatorColumn._variable_shape (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/feature_column/feature_column_v2.py:4331: VocabularyListCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. Epoch 1/5 1018/1018 [==============================] - 17s 17ms/step - loss: 0.5985 - accuracy: 0.8105 Epoch 2/5 1018/1018 [==============================] - 10s 10ms/step - loss: 0.3670 - accuracy: 0.8324 Epoch 3/5 1018/1018 [==============================] - 11s 10ms/step - loss: 0.3487 - accuracy: 0.8393 Epoch 4/5 1018/1018 [==============================] - 11s 10ms/step - loss: 0.3398 - accuracy: 0.8435 Epoch 5/5 1018/1018 [==============================] - 11s 11ms/step - loss: 0.3377 - accuracy: 0.8455
<tensorflow.python.keras.callbacks.History at 0x7f978f5b91d0>

##Evaluate model

Evaluate model

loss, accuracy = model.evaluate(eval_ds) print("Accuracy", accuracy)
509/509 [==============================] - 8s 15ms/step - loss: 0.3338 - accuracy: 0.8398 Accuracy 0.8398452

Evaluate a couple of random samples

sample_x = { 'age' : np.array([56, 36]), 'workclass': np.array(['Local-gov', 'Private']), 'education': np.array(['Bachelors', 'Bachelors']), 'marital_status': np.array(['Married-civ-spouse', 'Married-civ-spouse']), 'occupation': np.array(['Tech-support', 'Other-service']), 'relationship': np.array(['Husband', 'Husband']), 'race': np.array(['White', 'Black']), 'gender': np.array(['Male', 'Male']), 'capital_gain': np.array([0, 7298]), 'capital_loss': np.array([0, 0]), 'hours_per_week': np.array([40, 36]), 'native_country': np.array(['United-States', 'United-States']) } model.predict(sample_x)
array([[0.5541261], [0.6209938]], dtype=float32)