Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/lite/android/delegates/gpu.md
25118 views

GPU acceleration delegate with Interpreter API

Using graphics processing units (GPUs) to run your machine learning (ML) models can dramatically improve the performance and the user experience of your ML-enabled applications. On Android devices, you can enable

delegate and one of the following APIs:

  • Interpreter API - this guide

  • Task library API - guide

  • Native (C/C++) API - guide

This page describes how to enable GPU acceleration for TensorFlow Lite models in Android apps using the Interpreter API. For more information about using the GPU delegate for TensorFlow Lite, including best practices and advanced techniques, see the GPU delegates page.

Use GPU with TensorFlow Lite with Google Play services

The TensorFlow Lite Interpreter API provides a set of general purpose APIs for building a machine learning applications. This section describes how to use the GPU accelerator delegate with these APIs with TensorFlow Lite with Google Play services.

TensorFlow Lite with Google Play services is the recommended path to use TensorFlow Lite on Android. If your application is targeting devices not running Google Play, see the GPU with Interpreter API and standalone TensorFlow Lite section.

Add project dependencies

To enable access to the GPU delegate, add com.google.android.gms:play-services-tflite-gpu to your app's build.gradle file:

dependencies { ... implementation 'com.google.android.gms:play-services-tflite-java:16.0.1' implementation 'com.google.android.gms:play-services-tflite-gpu:16.1.0' }

Enable GPU acceleration

Then initialize TensorFlow Lite with Google Play services with the GPU support:

Kotlin


    val useGpuTask = TfLiteGpu.isGpuDelegateAvailable(context)
val interpreterTask = useGpuTask.continueWith { useGpuTask -> TfLite.initialize(context, TfLiteInitializationOptions.builder() .setEnableGpuDelegateSupport(useGpuTask.result) .build()) } </pre></p> </section> <section> <h3>Java</h3> <p><pre class="prettyprint lang-java"> Task<boolean> useGpuTask = TfLiteGpu.isGpuDelegateAvailable(context); Task<Options> interpreterOptionsTask = useGpuTask.continueWith({ task -> TfLite.initialize(context, TfLiteInitializationOptions.builder() .setEnableGpuDelegateSupport(true) .build()); }); </pre></p> </section>

You can finally initialize the interpreter passing a GpuDelegateFactory through InterpreterApi.Options:

Kotlin

val options = InterpreterApi.Options() .setRuntime(TfLiteRuntime.FROM_SYSTEM_ONLY) .addDelegateFactory(GpuDelegateFactory()) val interpreter = InterpreterApi(model, options) // Run inference writeToInput(input) interpreter.run(input, output) readFromOutput(output) </pre></p> </section> <section> <h3>Java</h3> <p><pre class="prettyprint lang-java"> Options options = InterpreterApi.Options() .setRuntime(TfLiteRuntime.FROM_SYSTEM_ONLY) .addDelegateFactory(new GpuDelegateFactory()); Interpreter interpreter = new InterpreterApi(model, options); // Run inference writeToInput(input); interpreter.run(input, output); readFromOutput(output); </pre></p> </section>

Note: The GPU delegate must be created on the same thread that runs it. Otherwise, you may see the following error, TfLiteGpuDelegate Invoke: GpuDelegate must run on the same thread where it was initialized.

The GPU delegate can also be used with ML model binding in Android Studio. For more information, see Generate model interfaces using metadata.

Use GPU with standalone TensorFlow Lite {:#standalone}

If your application is targets devices which are not running Google Play, it is possible to bundle the GPU delegate to your application and use it with the standalone version of TensorFlow Lite.

Add project dependencies

To enable access to the GPU delegate, add org.tensorflow:tensorflow-lite-gpu-delegate-plugin to your app's build.gradle file:

dependencies { ... implementation 'org.tensorflow:tensorflow-lite' implementation 'org.tensorflow:tensorflow-lite-gpu-delegate-plugin' }

Enable GPU acceleration

Then run TensorFlow Lite on GPU with TfLiteDelegate. In Java, you can specify the GpuDelegate through Interpreter.Options.

Kotlin


      import org.tensorflow.lite.Interpreter
      import org.tensorflow.lite.gpu.CompatibilityList
      import org.tensorflow.lite.gpu.GpuDelegate
val compatList = CompatibilityList() val options = Interpreter.Options().apply{ if(compatList.isDelegateSupportedOnThisDevice){ // if the device has a supported GPU, add the GPU delegate val delegateOptions = compatList.bestOptionsForThisDevice this.addDelegate(GpuDelegate(delegateOptions)) } else { // if the GPU is not supported, run on 4 threads this.setNumThreads(4) } } val interpreter = Interpreter(model, options) // Run inference writeToInput(input) interpreter.run(input, output) readFromOutput(output) </pre></p> </section> <section> <h3>Java</h3> <p><pre class="prettyprint lang-java"> import org.tensorflow.lite.Interpreter; import org.tensorflow.lite.gpu.CompatibilityList; import org.tensorflow.lite.gpu.GpuDelegate; // Initialize interpreter with GPU delegate Interpreter.Options options = new Interpreter.Options(); CompatibilityList compatList = CompatibilityList(); if(compatList.isDelegateSupportedOnThisDevice()){ // if the device has a supported GPU, add the GPU delegate GpuDelegate.Options delegateOptions = compatList.getBestOptionsForThisDevice(); GpuDelegate gpuDelegate = new GpuDelegate(delegateOptions); options.addDelegate(gpuDelegate); } else { // if the GPU is not supported, run on 4 threads options.setNumThreads(4); } Interpreter interpreter = new Interpreter(model, options); // Run inference writeToInput(input); interpreter.run(input, output); readFromOutput(output); </pre></p> </section>

Quantized models {:#quantized-models}

Android GPU delegate libraries support quantized models by default. You do not have to make any code changes to use quantized models with the GPU delegate. The following section explains how to disable quantized support for testing or experimental purposes.

Disable quantized model support

The following code shows how to disable support for quantized models.

Java


GpuDelegate delegate = new GpuDelegate(new GpuDelegate.Options().setQuantizedModelsAllowed(false));

Interpreter.Options options = (new Interpreter.Options()).addDelegate(delegate);

For more information about running quantized models with GPU acceleration, see GPU delegate overview.