Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/lite/examples/jax_conversion/overview.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Jax Model Conversion For TFLite

Overview

Note: This API is new and only available via pip install tf-nightly. It will be available in TensorFlow version 2.7. Also, the API is still experimental and subject to changes.

This CodeLab demonstrates how to build a model for MNIST recognition using Jax, and how to convert it to TensorFlow Lite. This codelab will also demonstrate how to optimize the Jax-converted TFLite model with post-training quantiztion.

Prerequisites

It's recommended to try this feature with the newest TensorFlow nightly pip build.

!pip install tf-nightly --upgrade !pip install jax --upgrade !pip install jaxlib --upgrade

Data Preparation

Download the MNIST data with Keras dataset and pre-process.

import numpy as np import tensorflow as tf import functools import time import itertools import numpy.random as npr import jax.numpy as jnp from jax import jit, grad, random from jax.example_libraries import optimizers from jax.example_libraries import stax
def _one_hot(x, k, dtype=np.float32): """Create a one-hot encoding of x of size k.""" return np.array(x[:, None] == np.arange(k), dtype) (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 train_images = train_images.astype(np.float32) test_images = test_images.astype(np.float32) train_labels = _one_hot(train_labels, 10) test_labels = _one_hot(test_labels, 10)

Build the MNIST model with Jax

def loss(params, batch): inputs, targets = batch preds = predict(params, inputs) return -jnp.mean(jnp.sum(preds * targets, axis=1)) def accuracy(params, batch): inputs, targets = batch target_class = jnp.argmax(targets, axis=1) predicted_class = jnp.argmax(predict(params, inputs), axis=1) return jnp.mean(predicted_class == target_class) init_random_params, predict = stax.serial( stax.Flatten, stax.Dense(1024), stax.Relu, stax.Dense(1024), stax.Relu, stax.Dense(10), stax.LogSoftmax) rng = random.PRNGKey(0)

Train & Evaluate the model

step_size = 0.001 num_epochs = 10 batch_size = 128 momentum_mass = 0.9 num_train = train_images.shape[0] num_complete_batches, leftover = divmod(num_train, batch_size) num_batches = num_complete_batches + bool(leftover) def data_stream(): rng = npr.RandomState(0) while True: perm = rng.permutation(num_train) for i in range(num_batches): batch_idx = perm[i * batch_size:(i + 1) * batch_size] yield train_images[batch_idx], train_labels[batch_idx] batches = data_stream() opt_init, opt_update, get_params = optimizers.momentum(step_size, mass=momentum_mass) @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) _, init_params = init_random_params(rng, (-1, 28 * 28)) opt_state = opt_init(init_params) itercount = itertools.count() print("\nStarting training...") for epoch in range(num_epochs): start_time = time.time() for _ in range(num_batches): opt_state = update(next(itercount), opt_state, next(batches)) epoch_time = time.time() - start_time params = get_params(opt_state) train_acc = accuracy(params, (train_images, train_labels)) test_acc = accuracy(params, (test_images, test_labels)) print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time)) print("Training set accuracy {}".format(train_acc)) print("Test set accuracy {}".format(test_acc))

Convert to TFLite model.

Note here, we

  1. Inline the params to the Jax predict func with functools.partial.

  2. Build a jnp.zeros, this is a "placeholder" tensor used for Jax to trace the model.

  3. Call experimental_from_jax:

  • The serving_func is wrapped in a list.

  • The input is associated with a given name and passed in as an array wrapped in a list.

serving_func = functools.partial(predict, params) x_input = jnp.zeros((1, 28, 28)) converter = tf.lite.TFLiteConverter.experimental_from_jax( [serving_func], [[('input1', x_input)]]) tflite_model = converter.convert() with open('jax_mnist.tflite', 'wb') as f: f.write(tflite_model)

Check the Converted TFLite Model

Compare the converted model's results with the Jax model.

expected = serving_func(train_images[0:1]) # Run the model with TensorFlow Lite interpreter = tf.lite.Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]["index"], train_images[0:1, :, :]) interpreter.invoke() result = interpreter.get_tensor(output_details[0]["index"]) # Assert if the result of TFLite model is consistent with the JAX model. np.testing.assert_almost_equal(expected, result, 1e-5)

Optimize the Model

We will provide a representative_dataset to do post-training quantiztion to optimize the model.

def representative_dataset(): for i in range(1000): x = train_images[i:i+1] yield [x] converter = tf.lite.TFLiteConverter.experimental_from_jax( [serving_func], [[('x', x_input)]]) tflite_model = converter.convert() converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_dataset converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] tflite_quant_model = converter.convert() with open('jax_mnist_quant.tflite', 'wb') as f: f.write(tflite_quant_model)

Evaluate the Optimized Model

expected = serving_func(train_images[0:1]) # Run the model with TensorFlow Lite interpreter = tf.lite.Interpreter(model_content=tflite_quant_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]["index"], train_images[0:1, :, :]) interpreter.invoke() result = interpreter.get_tensor(output_details[0]["index"]) # Assert if the result of TFLite model is consistent with the Jax model. np.testing.assert_almost_equal(expected, result, 1e-5)

Compare the Quantized Model size

We should be able to see the quantized model is four times smaller than the original model.

!du -h jax_mnist.tflite !du -h jax_mnist_quant.tflite