Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/en-snapshot/lite/examples/super_resolution/overview.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Super resolution with TensorFlow Lite

Overview

The task of recovering a high resolution (HR) image from its low resolution counterpart is commonly referred to as Single Image Super Resolution (SISR).

The model used here is ESRGAN (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks). And we are going to use TensorFlow Lite to run inference on the pretrained model.

The TFLite model is converted from this implementation hosted on TF Hub. Note that the model we converted upsamples a 50x50 low resolution image to a 200x200 high resolution image (scale factor=4). If you want a different input size or scale factor, you need to re-convert or re-train the original model.

Setup

Let's install required libraries first.

!pip install matplotlib tensorflow tensorflow-hub

Import dependencies.

import tensorflow as tf import tensorflow_hub as hub import matplotlib.pyplot as plt print(tf.__version__)

Download and convert the ESRGAN model

model = hub.load("https://tfhub.dev/captain-pool/esrgan-tf2/1") concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY] @tf.function(input_signature=[tf.TensorSpec(shape=[1, 50, 50, 3], dtype=tf.float32)]) def f(input): return concrete_func(input); converter = tf.lite.TFLiteConverter.from_concrete_functions([f.get_concrete_function()], model) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() # Save the TF Lite model. with tf.io.gfile.GFile('ESRGAN.tflite', 'wb') as f: f.write(tflite_model) esrgan_model_path = './ESRGAN.tflite'

Download a test image (insect head).

test_img_path = tf.keras.utils.get_file('lr.jpg', 'https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/super_resolution/android/app/src/main/assets/lr-1.jpg')

Generate a super resolution image using TensorFlow Lite

lr = tf.io.read_file(test_img_path) lr = tf.image.decode_jpeg(lr) lr = tf.expand_dims(lr, axis=0) lr = tf.cast(lr, tf.float32) # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=esrgan_model_path) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Run the model interpreter.set_tensor(input_details[0]['index'], lr) interpreter.invoke() # Extract the output and postprocess it output_data = interpreter.get_tensor(output_details[0]['index']) sr = tf.squeeze(output_data, axis=0) sr = tf.clip_by_value(sr, 0, 255) sr = tf.round(sr) sr = tf.cast(sr, tf.uint8)

Visualize the result

lr = tf.cast(tf.squeeze(lr, axis=0), tf.uint8) plt.figure(figsize = (1, 1)) plt.title('LR') plt.imshow(lr.numpy()); plt.figure(figsize=(10, 4)) plt.subplot(1, 2, 1) plt.title(f'ESRGAN (x4)') plt.imshow(sr.numpy()); bicubic = tf.image.resize(lr, [200, 200], tf.image.ResizeMethod.BICUBIC) bicubic = tf.cast(bicubic, tf.uint8) plt.subplot(1, 2, 2) plt.title('Bicubic') plt.imshow(bicubic.numpy());

Performance Benchmarks

Performance benchmark numbers are generated with the tool described here.

Model Name Model Size Device CPU GPU
super resolution (ESRGAN) 4.8 Mb Pixel 3 586.8ms* 128.6ms
Pixel 4 385.1ms* 130.3ms

*4 threads used