Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/es-419/addons/tutorials/time_stopping.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Retrollamadas de complementos de TensorFlow: TimeStopping

Descripción general

En este manual se demuestra como usar la retrollamada TimeStopping con complementos de TensorFlow.

Preparación

!pip install -U tensorflow-addons
import tensorflow_addons as tfa from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten

Importación y normalización de datos

# the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() # normalize data x_train, x_test = x_train / 255.0, x_test / 255.0

Generación de un modelo MNIST CNN simple

# build the model using the Sequential API model = Sequential() model.add(Flatten(input_shape=(28, 28))) model.add(Dense(128, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax')) model.compile(optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['accuracy'])

Uso simple de TimeStopping

# initialize TimeStopping callback time_stopping_callback = tfa.callbacks.TimeStopping(seconds=5, verbose=1) # train the model with tqdm_callback # make sure to set verbose = 0 to disable # the default progress bar. model.fit(x_train, y_train, batch_size=64, epochs=100, callbacks=[time_stopping_callback], validation_data=(x_test, y_test))