Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/es-419/hub/tutorials/yamnet.ipynb
25118 views
Kernel: Python 3

Licensed under the Apache License, Version 2.0 (the "License");

#@title Copyright 2020 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================

Clasificación de sonido con YAMNet

YAMNet es una red profunda que predice 521 clases de eventos de audio a partir del corpus AudioSet-YouTube en el que se entrenó. Emplea la arquitectura de convolución separable en profundidad Mobilenet_v1.

import tensorflow as tf import tensorflow_hub as hub import numpy as np import csv import matplotlib.pyplot as plt from IPython.display import Audio from scipy.io import wavfile

Cargue el modelo desde TensorFlow Hub.

Nota: Para leer la documentación simplemente siga la URL del modelo.

# Load the model. model = hub.load('https://tfhub.dev/google/yamnet/1')

El archivo de etiquetas se cargará desde los activos del modelo y está presente en model.class_map_path(). Lo cargaremos en la variable class_names.

# Find the name of the class with the top score when mean-aggregated across frames. def class_names_from_csv(class_map_csv_text): """Returns list of class names corresponding to score vector.""" class_names = [] with tf.io.gfile.GFile(class_map_csv_text) as csvfile: reader = csv.DictReader(csvfile) for row in reader: class_names.append(row['display_name']) return class_names class_map_path = model.class_map_path().numpy() class_names = class_names_from_csv(class_map_path)

Agregue un método para verificar y convertir un audio cargado que tenga la sample_rate adecuada (16 K); de lo contrario, podría afectar los resultados del modelo.

def ensure_sample_rate(original_sample_rate, waveform, desired_sample_rate=16000): """Resample waveform if required.""" if original_sample_rate != desired_sample_rate: desired_length = int(round(float(len(waveform)) / original_sample_rate * desired_sample_rate)) waveform = scipy.signal.resample(waveform, desired_length) return desired_sample_rate, waveform

Descargar y preparar el archivo de sonido

Aquí descargará un archivo wav y lo escuchará. Si ya tiene un archivo disponible, simplemente cárguelo en Colab y úselo ese.

Nota: Se requiere que el archivo de audio sea un archivo wav mono con una frecuencia de muestreo de 16 kHz.

!curl -O https://storage.googleapis.com/audioset/speech_whistling2.wav
!curl -O https://storage.googleapis.com/audioset/miaow_16k.wav
# wav_file_name = 'speech_whistling2.wav' wav_file_name = 'miaow_16k.wav' sample_rate, wav_data = wavfile.read(wav_file_name, 'rb') sample_rate, wav_data = ensure_sample_rate(sample_rate, wav_data) # Show some basic information about the audio. duration = len(wav_data)/sample_rate print(f'Sample rate: {sample_rate} Hz') print(f'Total duration: {duration:.2f}s') print(f'Size of the input: {len(wav_data)}') # Listening to the wav file. Audio(wav_data, rate=sample_rate)

wav_data debe normalizarse a valores entre [-1.0, 1.0] (como se indica en la documentación del modelo).

waveform = wav_data / tf.int16.max

Ejecutar el modelo

Ahora la parte fácil: con los datos ya preparados, simplemente llama al modelo y obtenga: puntuaciones, incorporaciones y el espectrograma.

La puntuación es el resultado principal que usaremos. El espectrograma se usará para hacer algunas visualizaciones más adelante.

# Run the model, check the output. scores, embeddings, spectrogram = model(waveform)
scores_np = scores.numpy() spectrogram_np = spectrogram.numpy() infered_class = class_names[scores_np.mean(axis=0).argmax()] print(f'The main sound is: {infered_class}')

Visualización

YAMNet también devuelve información adicional que podemos usar para la visualización. Veamos la forma de onda, el espectrograma y las clases principales inferidas.

plt.figure(figsize=(10, 6)) # Plot the waveform. plt.subplot(3, 1, 1) plt.plot(waveform) plt.xlim([0, len(waveform)]) # Plot the log-mel spectrogram (returned by the model). plt.subplot(3, 1, 2) plt.imshow(spectrogram_np.T, aspect='auto', interpolation='nearest', origin='lower') # Plot and label the model output scores for the top-scoring classes. mean_scores = np.mean(scores, axis=0) top_n = 10 top_class_indices = np.argsort(mean_scores)[::-1][:top_n] plt.subplot(3, 1, 3) plt.imshow(scores_np[:, top_class_indices].T, aspect='auto', interpolation='nearest', cmap='gray_r') # patch_padding = (PATCH_WINDOW_SECONDS / 2) / PATCH_HOP_SECONDS # values from the model documentation patch_padding = (0.025 / 2) / 0.01 plt.xlim([-patch_padding-0.5, scores.shape[0] + patch_padding-0.5]) # Label the top_N classes. yticks = range(0, top_n, 1) plt.yticks(yticks, [class_names[top_class_indices[x]] for x in yticks]) _ = plt.ylim(-0.5 + np.array([top_n, 0]))