Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/ja/lite/tutorials/pose_classification.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

MoveNet および TensorFlow Lite での人間姿勢分類

このノートブックは、MoveNet および TensorFlow Lite を使用して、姿勢分類モデルを学習する方法について説明します。結果として、新しい TensorFlow Lite が MoveNet モデルの出力を入力として受け取り、ヨガのポーズの名前といった姿勢分類を出力します。

このノートブックの手順は次の 3 つの部分に分かれています。

  • 第 1 部: 姿勢分類学習データを、MoveNet モデルによって検出されたランドマーク (体の主要な点) とグラウンドトゥルース姿勢ラベルを指定する CSV ファイルに再処理します。

  • 第 2 部: CSV ファイルのランドマーク座標を入力として受け取り、予測されたラベルを出力する姿勢分類モデルを構築して学習させます。

  • 第 3 部: 姿勢分類モデルを TFLite に変換します。

既定では、このノートブックは、ヨガのポーズというラベルが付けられた画像データセットを使用しますが、第 1 部のセクションでは、独自の姿勢の画像データセットをアップロードできます。

準備

このセクションでは、必要なライブラリをインポートし、複数の関数を定義して、学習画像を、ランドマーク座標とグラウンドトゥルースラベルを含む CSV に再処理します。

ここでは、観察可能な事象は発生しませんが、非表示のコードセルを拡大すると、後から呼び出す一部の関数の実装を確認することができます。

すべての詳細を知らずに CSV ファイルのみを作成したい場合は、このセクションの手順を実行し、第 1 部に進んでください。

!pip install -q opencv-python
import csv import cv2 import itertools import numpy as np import pandas as pd import os import sys import tempfile import tqdm from matplotlib import pyplot as plt from matplotlib.collections import LineCollection import tensorflow as tf import tensorflow_hub as hub from tensorflow import keras from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

MoveNet を使用して姿勢推定を実行するコード

#@title Functions to run pose estimation with MoveNet #@markdown You'll download the MoveNet Thunder model from [TensorFlow Hub](https://www.google.com/url?sa=D&q=https%3A%2F%2Ftfhub.dev%2Fs%3Fq%3Dmovenet), and reuse some inference and visualization logic from the [MoveNet Raspberry Pi (Python)](https://github.com/tensorflow/examples/tree/master/lite/examples/pose_estimation/raspberry_pi) sample app to detect landmarks (ear, nose, wrist etc.) from the input images. #@markdown *Note: You should use the most accurate pose estimation model (i.e. MoveNet Thunder) to detect the keypoints and use them to train the pose classification model to achieve the best accuracy. When running inference, you can use a pose estimation model of your choice (e.g. either MoveNet Lightning or Thunder).* # Download model from TF Hub and check out inference code from GitHub !wget -q -O movenet_thunder.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite !git clone https://github.com/tensorflow/examples.git pose_sample_rpi_path = os.path.join(os.getcwd(), 'examples/lite/examples/pose_estimation/raspberry_pi') sys.path.append(pose_sample_rpi_path) # Load MoveNet Thunder model import utils from data import BodyPart from ml import Movenet movenet = Movenet('movenet_thunder') # Define function to run pose estimation using MoveNet Thunder. # You'll apply MoveNet's cropping algorithm and run inference multiple times on # the input image to improve pose estimation accuracy. def detect(input_tensor, inference_count=3): """Runs detection on an input image. Args: input_tensor: A [height, width, 3] Tensor of type tf.float32. Note that height and width can be anything since the image will be immediately resized according to the needs of the model within this function. inference_count: Number of times the model should run repeatly on the same input image to improve detection accuracy. Returns: A Person entity detected by the MoveNet.SinglePose. """ image_height, image_width, channel = input_tensor.shape # Detect pose using the full input image movenet.detect(input_tensor.numpy(), reset_crop_region=True) # Repeatedly using previous detection result to identify the region of # interest and only croping that region to improve detection accuracy for _ in range(inference_count - 1): person = movenet.detect(input_tensor.numpy(), reset_crop_region=False) return person
#@title Functions to visualize the pose estimation results. def draw_prediction_on_image( image, person, crop_region=None, close_figure=True, keep_input_size=False): """Draws the keypoint predictions on image. Args: image: An numpy array with shape [height, width, channel] representing the pixel values of the input image. person: A person entity returned from the MoveNet.SinglePose model. close_figure: Whether to close the plt figure after the function returns. keep_input_size: Whether to keep the size of the input image. Returns: An numpy array with shape [out_height, out_width, channel] representing the image overlaid with keypoint predictions. """ # Draw the detection result on top of the image. image_np = utils.visualize(image, [person]) # Plot the image with detection results. height, width, channel = image.shape aspect_ratio = float(width) / height fig, ax = plt.subplots(figsize=(12 * aspect_ratio, 12)) im = ax.imshow(image_np) if close_figure: plt.close(fig) if not keep_input_size: image_np = utils.keep_aspect_ratio_resizer(image_np, (512, 512)) return image_np
#@title Code to load the images, detect pose landmarks and save them into a CSV file class MoveNetPreprocessor(object): """Helper class to preprocess pose sample images for classification.""" def __init__(self, images_in_folder, images_out_folder, csvs_out_path): """Creates a preprocessor to detection pose from images and save as CSV. Args: images_in_folder: Path to the folder with the input images. It should follow this structure: yoga_poses |__ downdog |______ 00000128.jpg |______ 00000181.bmp |______ ... |__ goddess |______ 00000243.jpg |______ 00000306.jpg |______ ... ... images_out_folder: Path to write the images overlay with detected landmarks. These images are useful when you need to debug accuracy issues. csvs_out_path: Path to write the CSV containing the detected landmark coordinates and label of each image that can be used to train a pose classification model. """ self._images_in_folder = images_in_folder self._images_out_folder = images_out_folder self._csvs_out_path = csvs_out_path self._messages = [] # Create a temp dir to store the pose CSVs per class self._csvs_out_folder_per_class = tempfile.mkdtemp() # Get list of pose classes and print image statistics self._pose_class_names = sorted( [n for n in os.listdir(self._images_in_folder) if not n.startswith('.')] ) def process(self, per_pose_class_limit=None, detection_threshold=0.1): """Preprocesses images in the given folder. Args: per_pose_class_limit: Number of images to load. As preprocessing usually takes time, this parameter can be specified to make the reduce of the dataset for testing. detection_threshold: Only keep images with all landmark confidence score above this threshold. """ # Loop through the classes and preprocess its images for pose_class_name in self._pose_class_names: print('Preprocessing', pose_class_name, file=sys.stderr) # Paths for the pose class. images_in_folder = os.path.join(self._images_in_folder, pose_class_name) images_out_folder = os.path.join(self._images_out_folder, pose_class_name) csv_out_path = os.path.join(self._csvs_out_folder_per_class, pose_class_name + '.csv') if not os.path.exists(images_out_folder): os.makedirs(images_out_folder) # Detect landmarks in each image and write it to a CSV file with open(csv_out_path, 'w') as csv_out_file: csv_out_writer = csv.writer(csv_out_file, delimiter=',', quoting=csv.QUOTE_MINIMAL) # Get list of images image_names = sorted( [n for n in os.listdir(images_in_folder) if not n.startswith('.')]) if per_pose_class_limit is not None: image_names = image_names[:per_pose_class_limit] valid_image_count = 0 # Detect pose landmarks from each image for image_name in tqdm.tqdm(image_names): image_path = os.path.join(images_in_folder, image_name) try: image = tf.io.read_file(image_path) image = tf.io.decode_jpeg(image) except: self._messages.append('Skipped ' + image_path + '. Invalid image.') continue else: image = tf.io.read_file(image_path) image = tf.io.decode_jpeg(image) image_height, image_width, channel = image.shape # Skip images that isn't RGB because Movenet requires RGB images if channel != 3: self._messages.append('Skipped ' + image_path + '. Image isn\'t in RGB format.') continue person = detect(image) # Save landmarks if all landmarks were detected min_landmark_score = min( [keypoint.score for keypoint in person.keypoints]) should_keep_image = min_landmark_score >= detection_threshold if not should_keep_image: self._messages.append('Skipped ' + image_path + '. No pose was confidentlly detected.') continue valid_image_count += 1 # Draw the prediction result on top of the image for debugging later output_overlay = draw_prediction_on_image( image.numpy().astype(np.uint8), person, close_figure=True, keep_input_size=True) # Write detection result into an image file output_frame = cv2.cvtColor(output_overlay, cv2.COLOR_RGB2BGR) cv2.imwrite(os.path.join(images_out_folder, image_name), output_frame) # Get landmarks and scale it to the same size as the input image pose_landmarks = np.array( [[keypoint.coordinate.x, keypoint.coordinate.y, keypoint.score] for keypoint in person.keypoints], dtype=np.float32) # Write the landmark coordinates to its per-class CSV file coordinates = pose_landmarks.flatten().astype(np.str).tolist() csv_out_writer.writerow([image_name] + coordinates) if not valid_image_count: raise RuntimeError( 'No valid images found for the "{}" class.' .format(pose_class_name)) # Print the error message collected during preprocessing. print('\n'.join(self._messages)) # Combine all per-class CSVs into a single output file all_landmarks_df = self._all_landmarks_as_dataframe() all_landmarks_df.to_csv(self._csvs_out_path, index=False) def class_names(self): """List of classes found in the training dataset.""" return self._pose_class_names def _all_landmarks_as_dataframe(self): """Merge all per-class CSVs into a single dataframe.""" total_df = None for class_index, class_name in enumerate(self._pose_class_names): csv_out_path = os.path.join(self._csvs_out_folder_per_class, class_name + '.csv') per_class_df = pd.read_csv(csv_out_path, header=None) # Add the labels per_class_df['class_no'] = [class_index]*len(per_class_df) per_class_df['class_name'] = [class_name]*len(per_class_df) # Append the folder name to the filename column (first column) per_class_df[per_class_df.columns[0]] = (os.path.join(class_name, '') + per_class_df[per_class_df.columns[0]].astype(str)) if total_df is None: # For the first class, assign its data to the total dataframe total_df = per_class_df else: # Concatenate each class's data into the total dataframe total_df = pd.concat([total_df, per_class_df], axis=0) list_name = [[bodypart.name + '_x', bodypart.name + '_y', bodypart.name + '_score'] for bodypart in BodyPart] header_name = [] for columns_name in list_name: header_name += columns_name header_name = ['file_name'] + header_name header_map = {total_df.columns[i]: header_name[i] for i in range(len(header_name))} total_df.rename(header_map, axis=1, inplace=True) return total_df
#@title (Optional) Code snippet to try out the Movenet pose estimation logic #@markdown You can download an image from the internet, run the pose estimation logic on it and plot the detected landmarks on top of the input image. #@markdown *Note: This code snippet is also useful for debugging when you encounter an image with bad pose classification accuracy. You can run pose estimation on the image and see if the detected landmarks look correct or not before investigating the pose classification logic.* test_image_url = "https://cdn.pixabay.com/photo/2017/03/03/17/30/yoga-2114512_960_720.jpg" #@param {type:"string"} !wget -O /tmp/image.jpeg {test_image_url} if len(test_image_url): image = tf.io.read_file('/tmp/image.jpeg') image = tf.io.decode_jpeg(image) person = detect(image) _ = draw_prediction_on_image(image.numpy(), person, crop_region=None, close_figure=False, keep_input_size=True)

第 1 部: 入力画像の再処理

姿勢分類器の入力は MoveNet モデルからの出力ランドマークであるため、MoveNet 経由でラベル付けされた画像を実行し、すべてのランドマークデータとグラウンドトゥルースラベルを CSV ファイルに取り込んで、学習データセットを生成する必要があります。

このチュートリアル用に提供しているデータセットは、CG で生成されたヨガのポーズのデータセットです。CG で生成された、5 つのヨガのポーズを取っている複数のモデルの画像が含まれています。このディレクトリはすでにtrain データセットと test データセットに分割されています。

このセクションでは、ヨガデータセットをダウンロードして、それを MoveNet 経由で実行し、すべてのランドマークを CSV ファイルに取り込めるようにします。ただし、ヨガデータセットを MoveNet に入力し、この CSV ファイルを生成するには、約 15 分かかります。このため、代替策として、次の is_skip_step_1 パラメータを True に設定して、あらかじめ準備された既存のヨガデータセット CSV ファイルをダウンロードできます。このようにすると、この手順を省略して、この前処理ステップで作成されるのと同じ CSV ファイルをダウンロードできます。

逆に、自分の独自の画像データセットで姿勢分類器を学習させたい場合は、画像をアップロードして、この前処理ステップを実行 (is_skip_step_1False に設定すること)し、次の手順に従って独自の姿勢データセットをアップロードする必要があります。

is_skip_step_1 = False #@param ["False", "True"] {type:"raw"}

(任意) 独自の姿勢データセットのアップロード

use_custom_dataset = False #@param ["False", "True"] {type:"raw"} dataset_is_split = False #@param ["False", "True"] {type:"raw"}

独自のラベル付けされた姿勢 (ヨガのポーズだけではなく、どのような姿勢でもかまいません) で姿勢分類器を学習させたい場合は、次の手順に従います。

  1. 上記の use_custom_dataset オプションを True に設定します。

  2. 画像データセットが入ったフォルダを含むアーカイブファイル (ZIP、TAR など) を準備します。フォルダには、次のように姿勢の画像がソートされた状態で格納されている必要があります。

すでにデータセットを学習セットとテストセットに分割している場合は、dataset_is_splitTrue に設定します。つまり、画像フォルダには、次のように、「train」ディレクトリと「test」ディレクトリが必要です。

yoga_poses/ |__ train/ |__ downdog/ |______ 00000128.jpg |______ ... |__ test/ |__ downdog/ |______ 00000181.jpg |______ ...

Or, if your dataset is NOT split yet, then set `dataset_is_split` to **False** and we'll split it up based on a specified split fraction. That is, your uploaded images folder should look like this:

yoga_poses/ |__ downdog/ |______ 00000128.jpg |______ 00000181.jpg |______ ... |__ goddess/ |______ 00000243.jpg |______ 00000306.jpg |______ ...

  1. 左の Files タブ (フォルダアイコン) をクリックして、Upload to session storage (ファイルアイコン) をクリックします。

  2. アーカイブファイルを選択し、アップロードが完了するまで待ってから、続行します。

  3. 次のコードブロックを編集し、アーカイブファイルと画像ディレクトリの名前を指定します。(既定では、ZIP ファイルに設定されているため、別の形式のアーカイブファイルを使用する場合は、該当する部分を修正する必要があります。)

  4. ノートブックの残りの部分を実行します。

#@markdown Be sure you run this cell. It's hiding the `split_into_train_test()` function that's called in the next code block. import os import random import shutil def split_into_train_test(images_origin, images_dest, test_split): """Splits a directory of sorted images into training and test sets. Args: images_origin: Path to the directory with your images. This directory must include subdirectories for each of your labeled classes. For example: yoga_poses/ |__ downdog/ |______ 00000128.jpg |______ 00000181.jpg |______ ... |__ goddess/ |______ 00000243.jpg |______ 00000306.jpg |______ ... ... images_dest: Path to a directory where you want the split dataset to be saved. The results looks like this: split_yoga_poses/ |__ train/ |__ downdog/ |______ 00000128.jpg |______ ... |__ test/ |__ downdog/ |______ 00000181.jpg |______ ... test_split: Fraction of data to reserve for test (float between 0 and 1). """ _, dirs, _ = next(os.walk(images_origin)) TRAIN_DIR = os.path.join(images_dest, 'train') TEST_DIR = os.path.join(images_dest, 'test') os.makedirs(TRAIN_DIR, exist_ok=True) os.makedirs(TEST_DIR, exist_ok=True) for dir in dirs: # Get all filenames for this dir, filtered by filetype filenames = os.listdir(os.path.join(images_origin, dir)) filenames = [os.path.join(images_origin, dir, f) for f in filenames if ( f.endswith('.png') or f.endswith('.jpg') or f.endswith('.jpeg') or f.endswith('.bmp'))] # Shuffle the files, deterministically filenames.sort() random.seed(42) random.shuffle(filenames) # Divide them into train/test dirs os.makedirs(os.path.join(TEST_DIR, dir), exist_ok=True) os.makedirs(os.path.join(TRAIN_DIR, dir), exist_ok=True) test_count = int(len(filenames) * test_split) for i, file in enumerate(filenames): if i < test_count: destination = os.path.join(TEST_DIR, dir, os.path.split(file)[1]) else: destination = os.path.join(TRAIN_DIR, dir, os.path.split(file)[1]) shutil.copyfile(file, destination) print(f'Moved {test_count} of {len(filenames)} from class "{dir}" into test.') print(f'Your split dataset is in "{images_dest}"')
if use_custom_dataset: # ATTENTION: # You must edit these two lines to match your archive and images folder name: # !tar -xf YOUR_DATASET_ARCHIVE_NAME.tar !unzip -q YOUR_DATASET_ARCHIVE_NAME.zip dataset_in = 'YOUR_DATASET_DIR_NAME' # You can leave the rest alone: if not os.path.isdir(dataset_in): raise Exception("dataset_in is not a valid directory") if dataset_is_split: IMAGES_ROOT = dataset_in else: dataset_out = 'split_' + dataset_in split_into_train_test(dataset_in, dataset_out, test_split=0.2) IMAGES_ROOT = dataset_out

注意: split_into_train_test() を使用してデータセットを分割している場合は、すべての画像を PNG、JPEG、または BMP にする必要があります。他のファイルタイプは無視されます。

ヨガデータセットのダウンロード

if not is_skip_step_1 and not use_custom_dataset: !wget -O yoga_poses.zip http://download.tensorflow.org/data/pose_classification/yoga_poses.zip !unzip -q yoga_poses.zip -d yoga_cg IMAGES_ROOT = "yoga_cg"

TRAIN データセットの前処理

if not is_skip_step_1: images_in_train_folder = os.path.join(IMAGES_ROOT, 'train') images_out_train_folder = 'poses_images_out_train' csvs_out_train_path = 'train_data.csv' preprocessor = MoveNetPreprocessor( images_in_folder=images_in_train_folder, images_out_folder=images_out_train_folder, csvs_out_path=csvs_out_train_path, ) preprocessor.process(per_pose_class_limit=None)

TEST データセットの前処理

if not is_skip_step_1: images_in_test_folder = os.path.join(IMAGES_ROOT, 'test') images_out_test_folder = 'poses_images_out_test' csvs_out_test_path = 'test_data.csv' preprocessor = MoveNetPreprocessor( images_in_folder=images_in_test_folder, images_out_folder=images_out_test_folder, csvs_out_path=csvs_out_test_path, ) preprocessor.process(per_pose_class_limit=None)

第 2 部: ランドマーク座標を入力として受け取り、予測されたラベルを出力する姿勢分類モデルを学習させる。

ランドマーク座標を取り、入力画像内の人間の姿勢分類を予測する TensorFlow モデルを構築します。このモデルには次の下位モデルがあります。

  • 下位モデル 1 は、検出されたランドマーク座標から姿勢の埋め込み (特徴量ベクトル) を計算します。

  • 下位モデル 2 は、複数の Dense レイヤー経由で姿勢埋め込みを入力し、姿勢分類を予測します。

第 1 部で前処理されたデータセットに基づき、モデルを学習させます。

(任意) 第 1 部を実行しなかった場合に前処理されたデータセットをダウンロードする

# Download the preprocessed CSV files which are the same as the output of step 1 if is_skip_step_1: !wget -O train_data.csv http://download.tensorflow.org/data/pose_classification/yoga_train_data.csv !wget -O test_data.csv http://download.tensorflow.org/data/pose_classification/yoga_test_data.csv csvs_out_train_path = 'train_data.csv' csvs_out_test_path = 'test_data.csv' is_skipped_step_1 = True

前処理された CSV を TRAIN および TEST データセットに読み込む

def load_pose_landmarks(csv_path): """Loads a CSV created by MoveNetPreprocessor. Returns: X: Detected landmark coordinates and scores of shape (N, 17 * 3) y: Ground truth labels of shape (N, label_count) classes: The list of all class names found in the dataset dataframe: The CSV loaded as a Pandas dataframe features (X) and ground truth labels (y) to use later to train a pose classification model. """ # Load the CSV file dataframe = pd.read_csv(csv_path) df_to_process = dataframe.copy() # Drop the file_name columns as you don't need it during training. df_to_process.drop(columns=['file_name'], inplace=True) # Extract the list of class names classes = df_to_process.pop('class_name').unique() # Extract the labels y = df_to_process.pop('class_no') # Convert the input features and labels into the correct format for training. X = df_to_process.astype('float64') y = keras.utils.to_categorical(y) return X, y, classes, dataframe

元の TRAIN データセットを読み込んで、TRAIN (データの 85%) と VALIDATE (残りの 15%) に分割します。

# Load the train data X, y, class_names, _ = load_pose_landmarks(csvs_out_train_path) # Split training data (X, y) into (X_train, y_train) and (X_val, y_val) X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.15)
# Load the test data X_test, y_test, _, df_test = load_pose_landmarks(csvs_out_test_path)

姿勢ランドマークを姿勢埋め込み (特徴量ベクトル) に変換し、姿勢分類を実行する関数を定義する

次に、次の手順で、ランドマーク座標を特徴量ベクトルに変換します。

  1. 姿勢の中心を元の位置に移動します。

  2. 姿勢のサイズが 1 になるように、姿勢を調整します。

  3. これらの座標を特徴量ベクトルに一次元化します。

この特徴量ベクトルを使用して、ニュートラルネットワークに基づく姿勢分類器を学習させます。

def get_center_point(landmarks, left_bodypart, right_bodypart): """Calculates the center point of the two given landmarks.""" left = tf.gather(landmarks, left_bodypart.value, axis=1) right = tf.gather(landmarks, right_bodypart.value, axis=1) center = left * 0.5 + right * 0.5 return center def get_pose_size(landmarks, torso_size_multiplier=2.5): """Calculates pose size. It is the maximum of two values: * Torso size multiplied by `torso_size_multiplier` * Maximum distance from pose center to any pose landmark """ # Hips center hips_center = get_center_point(landmarks, BodyPart.LEFT_HIP, BodyPart.RIGHT_HIP) # Shoulders center shoulders_center = get_center_point(landmarks, BodyPart.LEFT_SHOULDER, BodyPart.RIGHT_SHOULDER) # Torso size as the minimum body size torso_size = tf.linalg.norm(shoulders_center - hips_center) # Pose center pose_center_new = get_center_point(landmarks, BodyPart.LEFT_HIP, BodyPart.RIGHT_HIP) pose_center_new = tf.expand_dims(pose_center_new, axis=1) # Broadcast the pose center to the same size as the landmark vector to # perform substraction pose_center_new = tf.broadcast_to(pose_center_new, [tf.size(landmarks) // (17*2), 17, 2]) # Dist to pose center d = tf.gather(landmarks - pose_center_new, 0, axis=0, name="dist_to_pose_center") # Max dist to pose center max_dist = tf.reduce_max(tf.linalg.norm(d, axis=0)) # Normalize scale pose_size = tf.maximum(torso_size * torso_size_multiplier, max_dist) return pose_size def normalize_pose_landmarks(landmarks): """Normalizes the landmarks translation by moving the pose center to (0,0) and scaling it to a constant pose size. """ # Move landmarks so that the pose center becomes (0,0) pose_center = get_center_point(landmarks, BodyPart.LEFT_HIP, BodyPart.RIGHT_HIP) pose_center = tf.expand_dims(pose_center, axis=1) # Broadcast the pose center to the same size as the landmark vector to perform # substraction pose_center = tf.broadcast_to(pose_center, [tf.size(landmarks) // (17*2), 17, 2]) landmarks = landmarks - pose_center # Scale the landmarks to a constant pose size pose_size = get_pose_size(landmarks) landmarks /= pose_size return landmarks def landmarks_to_embedding(landmarks_and_scores): """Converts the input landmarks into a pose embedding.""" # Reshape the flat input into a matrix with shape=(17, 3) reshaped_inputs = keras.layers.Reshape((17, 3))(landmarks_and_scores) # Normalize landmarks 2D landmarks = normalize_pose_landmarks(reshaped_inputs[:, :, :2]) # Flatten the normalized landmark coordinates into a vector embedding = keras.layers.Flatten()(landmarks) return embedding

姿勢分類の Keras モデルの定義

Keras モデルは検出された姿勢ランドマークを取り、姿勢埋め込みを計算し、姿勢分類を予測します。

# Define the model inputs = tf.keras.Input(shape=(51)) embedding = landmarks_to_embedding(inputs) layer = keras.layers.Dense(128, activation=tf.nn.relu6)(embedding) layer = keras.layers.Dropout(0.5)(layer) layer = keras.layers.Dense(64, activation=tf.nn.relu6)(layer) layer = keras.layers.Dropout(0.5)(layer) outputs = keras.layers.Dense(len(class_names), activation="softmax")(layer) model = keras.Model(inputs, outputs) model.summary()
model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) # Add a checkpoint callback to store the checkpoint that has the highest # validation accuracy. checkpoint_path = "weights.best.hdf5" checkpoint = keras.callbacks.ModelCheckpoint(checkpoint_path, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') earlystopping = keras.callbacks.EarlyStopping(monitor='val_accuracy', patience=20) # Start training history = model.fit(X_train, y_train, epochs=200, batch_size=16, validation_data=(X_val, y_val), callbacks=[checkpoint, earlystopping])
# Visualize the training history to see whether you're overfitting. plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['TRAIN', 'VAL'], loc='lower right') plt.show()
# Evaluate the model using the TEST dataset loss, accuracy = model.evaluate(X_test, y_test)

モデルパフォーマンスを効果的に理解するための混同行列を描画する

def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """Plots the confusion matrix.""" if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=55) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout() # Classify pose in the TEST dataset using the trained model y_pred = model.predict(X_test) # Convert the prediction result to class name y_pred_label = [class_names[i] for i in np.argmax(y_pred, axis=1)] y_true_label = [class_names[i] for i in np.argmax(y_test, axis=1)] # Plot the confusion matrix cm = confusion_matrix(np.argmax(y_test, axis=1), np.argmax(y_pred, axis=1)) plot_confusion_matrix(cm, class_names, title ='Confusion Matrix of Pose Classification Model') # Print the classification report print('\nClassification Report:\n', classification_report(y_true_label, y_pred_label))

(任意) 予測ミスの調査

誤って予測された TEST データセットの姿勢を調査し、モデル精度を改善できるかどうかを確認できます。

注意: この方法では、ローカルコンピュータの姿勢画像ファイルを表示する必要があるため、手順 1 を実行した場合にのみ動作します。

if is_skip_step_1: raise RuntimeError('You must have run step 1 to run this cell.') # If step 1 was skipped, skip this step. IMAGE_PER_ROW = 3 MAX_NO_OF_IMAGE_TO_PLOT = 30 # Extract the list of incorrectly predicted poses false_predict = [id_in_df for id_in_df in range(len(y_test)) \ if y_pred_label[id_in_df] != y_true_label[id_in_df]] if len(false_predict) > MAX_NO_OF_IMAGE_TO_PLOT: false_predict = false_predict[:MAX_NO_OF_IMAGE_TO_PLOT] # Plot the incorrectly predicted images row_count = len(false_predict) // IMAGE_PER_ROW + 1 fig = plt.figure(figsize=(10 * IMAGE_PER_ROW, 10 * row_count)) for i, id_in_df in enumerate(false_predict): ax = fig.add_subplot(row_count, IMAGE_PER_ROW, i + 1) image_path = os.path.join(images_out_test_folder, df_test.iloc[id_in_df]['file_name']) image = cv2.imread(image_path) plt.title("Predict: %s; Actual: %s" % (y_pred_label[id_in_df], y_true_label[id_in_df])) plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) plt.show()

第 3 部: 姿勢分類モデルを TFLite に変換する

Keras 姿勢分類モデルを TensorFlow Lite 形式に変換し、モバイルアプリ、Web ブラウザ、エッジデバイスに展開できるようにします。モデルを変換するときには、ダイナミックレンジ量子化を適用し、大きい精度損失がない状態で、姿勢分類 TensorFlow Lite モデルサイズを約 1/4 まで小さくします。

注意: TensorFlow Lite は複数の量子化スキームをサポートしています。詳細については、ドキュメントを参照してください。

converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() print('Model size: %dKB' % (len(tflite_model) / 1024)) with open('pose_classifier.tflite', 'wb') as f: f.write(tflite_model)

クラスインデックスと人間が読み取れるクラス名とのマッピングを含むラベルファイルを作成します。

with open('pose_labels.txt', 'w') as f: f.write('\n'.join(class_names))

量子化を適用してモデルサイズを小さくしたので、量子化された TFLite モデルを評価して、精度の低下が許容可能かどうかを確認します。

def evaluate_model(interpreter, X, y_true): """Evaluates the given TFLite model and return its accuracy.""" input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] # Run predictions on all given poses. y_pred = [] for i in range(len(y_true)): # Pre-processing: add batch dimension and convert to float32 to match with # the model's input data format. test_image = X[i: i + 1].astype('float32') interpreter.set_tensor(input_index, test_image) # Run inference. interpreter.invoke() # Post-processing: remove batch dimension and find the class with highest # probability. output = interpreter.tensor(output_index) predicted_label = np.argmax(output()[0]) y_pred.append(predicted_label) # Compare prediction results with ground truth labels to calculate accuracy. y_pred = keras.utils.to_categorical(y_pred) return accuracy_score(y_true, y_pred) # Evaluate the accuracy of the converted TFLite model classifier_interpreter = tf.lite.Interpreter(model_content=tflite_model) classifier_interpreter.allocate_tensors() print('Accuracy of TFLite model: %s' % evaluate_model(classifier_interpreter, X_test, y_test))

TFLite モデル (pose_classifier.tflite) とラベルファイル (pose_labels.txt) をダウンロードして、カスタム姿勢を分類します。TFLite 姿勢分類モデルの使用方法に関するエンドツーエンドの例については、Android および Python/Raspberry Pi サンプルアプリを確認してください。

!zip pose_classifier.zip pose_labels.txt pose_classifier.tflite
# Download the zip archive if running on Colab. try: from google.colab import files files.download('pose_classifier.zip') except: pass