Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/ko/lattice/tutorials/aggregate_function_models.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

TF Lattice 집계 함수 모델

개요

TFL 사전 제작된 집계 함수 모델은 복잡한 집계 함수를 학습하기 위해 TFL tf.keras.model 인스턴스를 구축하는 빠르고 쉬운 방법입니다. 이 가이드에서는 TFL 사전 제작된 집계 함수 모델을 구성하고 훈련/테스트하는 데 필요한 단계를 설명합니다.

설정

TF Lattice 패키지 설치하기

#@test {"skip": true} !pip install tensorflow-lattice pydot

필수 패키지 가져오기

import tensorflow as tf import collections import logging import numpy as np import pandas as pd import sys import tensorflow_lattice as tfl logging.disable(sys.maxsize)

퍼즐 데이터세트 다운로드하기

train_dataframe = pd.read_csv( 'https://raw.githubusercontent.com/wbakst/puzzles_data/master/train.csv') train_dataframe.head()
test_dataframe = pd.read_csv( 'https://raw.githubusercontent.com/wbakst/puzzles_data/master/test.csv') test_dataframe.head()

특성과 레이블 추출하기 및 변환하기

# Features: # - star_rating rating out of 5 stars (1-5) # - word_count number of words in the review # - is_amazon 1 = reviewed on amazon; 0 = reviewed on artifact website # - includes_photo if the review includes a photo of the puzzle # - num_helpful number of people that found this review helpful # - num_reviews total number of reviews for this puzzle (we construct) # # This ordering of feature names will be the exact same order that we construct # our model to expect. feature_names = [ 'star_rating', 'word_count', 'is_amazon', 'includes_photo', 'num_helpful', 'num_reviews' ]
def extract_features(dataframe, label_name): # First we extract flattened features. flattened_features = { feature_name: dataframe[feature_name].values.astype(float) for feature_name in feature_names[:-1] } # Construct mapping from puzzle name to feature. star_rating = collections.defaultdict(list) word_count = collections.defaultdict(list) is_amazon = collections.defaultdict(list) includes_photo = collections.defaultdict(list) num_helpful = collections.defaultdict(list) labels = {} # Extract each review. for i in range(len(dataframe)): row = dataframe.iloc[i] puzzle_name = row['puzzle_name'] star_rating[puzzle_name].append(float(row['star_rating'])) word_count[puzzle_name].append(float(row['word_count'])) is_amazon[puzzle_name].append(float(row['is_amazon'])) includes_photo[puzzle_name].append(float(row['includes_photo'])) num_helpful[puzzle_name].append(float(row['num_helpful'])) labels[puzzle_name] = float(row[label_name]) # Organize data into list of list of features. names = list(star_rating.keys()) star_rating = [star_rating[name] for name in names] word_count = [word_count[name] for name in names] is_amazon = [is_amazon[name] for name in names] includes_photo = [includes_photo[name] for name in names] num_helpful = [num_helpful[name] for name in names] num_reviews = [[len(ratings)] * len(ratings) for ratings in star_rating] labels = [labels[name] for name in names] # Flatten num_reviews flattened_features['num_reviews'] = [len(reviews) for reviews in num_reviews] # Convert data into ragged tensors. star_rating = tf.ragged.constant(star_rating) word_count = tf.ragged.constant(word_count) is_amazon = tf.ragged.constant(is_amazon) includes_photo = tf.ragged.constant(includes_photo) num_helpful = tf.ragged.constant(num_helpful) num_reviews = tf.ragged.constant(num_reviews) labels = tf.constant(labels) # Now we can return our extracted data. return (star_rating, word_count, is_amazon, includes_photo, num_helpful, num_reviews), labels, flattened_features
train_xs, train_ys, flattened_features = extract_features(train_dataframe, 'Sales12-18MonthsAgo') test_xs, test_ys, _ = extract_features(test_dataframe, 'SalesLastSixMonths')
# Let's define our label minimum and maximum. min_label, max_label = float(np.min(train_ys)), float(np.max(train_ys)) min_label, max_label = float(np.min(train_ys)), float(np.max(train_ys))

이 가이드에서 훈련에 사용되는 기본값 설정하기

LEARNING_RATE = 0.1 BATCH_SIZE = 128 NUM_EPOCHS = 500 MIDDLE_DIM = 3 MIDDLE_LATTICE_SIZE = 2 MIDDLE_KEYPOINTS = 16 OUTPUT_KEYPOINTS = 8

특성 구성

특성 보정 및 특성별 구성은 tfl.configs.FeatureConfig를 사용하여 설정됩니다. 특성 구성에는 단조 제약 조건, 특성별 정규화(tfl.configs.RegularizerConfig 참조) 및 격자 모델에 대한 격자 크기가 포함됩니다.

모델이 인식해야 할 모든 특성에 대한 특성 구성을 완전하게 지정해야 합니다. 그렇지 않으면 모델은 해당 특성이 존재하는지 알 수 없습니다. 집계 모델의 경우 이러한 특성이 자동으로 고려되고 비 정형으로 적절하게 처리됩니다.

분위수 계산하기

tfl.configs.FeatureConfig에서 pwl_calibration_input_keypoints의 기본 설정은 'quantiles'이지만 사전 제작된 모델의 경우 입력 키포인트를 수동으로 정의해야 합니다. 이를 위해 먼저 분위수 계산을 위한 자체 도우미 함수를 정의합니다.

def compute_quantiles(features, num_keypoints=10, clip_min=None, clip_max=None, missing_value=None): # Clip min and max if desired. if clip_min is not None: features = np.maximum(features, clip_min) features = np.append(features, clip_min) if clip_max is not None: features = np.minimum(features, clip_max) features = np.append(features, clip_max) # Make features unique. unique_features = np.unique(features) # Remove missing values if specified. if missing_value is not None: unique_features = np.delete(unique_features, np.where(unique_features == missing_value)) # Compute and return quantiles over unique non-missing feature values. return np.quantile( unique_features, np.linspace(0., 1., num=num_keypoints), interpolation='nearest').astype(float)

특성 구성 정의하기

이제 분위수를 계산할 수 있으므로 모델이 입력으로 사용하기 원하는 각 특성에 대한 특성 구성을 정의합니다.

# Feature configs are used to specify how each feature is calibrated and used. feature_configs = [ tfl.configs.FeatureConfig( name='star_rating', lattice_size=2, monotonicity='increasing', pwl_calibration_num_keypoints=5, pwl_calibration_input_keypoints=compute_quantiles( flattened_features['star_rating'], num_keypoints=5), ), tfl.configs.FeatureConfig( name='word_count', lattice_size=2, monotonicity='increasing', pwl_calibration_num_keypoints=5, pwl_calibration_input_keypoints=compute_quantiles( flattened_features['word_count'], num_keypoints=5), ), tfl.configs.FeatureConfig( name='is_amazon', lattice_size=2, num_buckets=2, ), tfl.configs.FeatureConfig( name='includes_photo', lattice_size=2, num_buckets=2, ), tfl.configs.FeatureConfig( name='num_helpful', lattice_size=2, monotonicity='increasing', pwl_calibration_num_keypoints=5, pwl_calibration_input_keypoints=compute_quantiles( flattened_features['num_helpful'], num_keypoints=5), # Larger num_helpful indicating more trust in star_rating. reflects_trust_in=[ tfl.configs.TrustConfig( feature_name="star_rating", trust_type="trapezoid"), ], ), tfl.configs.FeatureConfig( name='num_reviews', lattice_size=2, monotonicity='increasing', pwl_calibration_num_keypoints=5, pwl_calibration_input_keypoints=compute_quantiles( flattened_features['num_reviews'], num_keypoints=5), ) ]

집계 함수 모델

TFL 사전 제작 모델을 구성하려면 먼저 tfl.configs에서 모델 구성을 갖추세요. 집계 함수 모델은 tfl.configs.AggregateFunctionConfig를 사용하여 구성됩니다. 구간 선형 및 범주형 보정을 적용한 다음 비 정형 입력의 각 차원에 격자 모델을 적용합니다. 그런 다음 각 차원의 출력에 집계 레이어를 적용합니다. 그 후 선택적 출력 구간 선형 보정이 이어집니다.

# Model config defines the model structure for the aggregate function model. aggregate_function_model_config = tfl.configs.AggregateFunctionConfig( feature_configs=feature_configs, middle_dimension=MIDDLE_DIM, middle_lattice_size=MIDDLE_LATTICE_SIZE, middle_calibration=True, middle_calibration_num_keypoints=MIDDLE_KEYPOINTS, middle_monotonicity='increasing', output_min=min_label, output_max=max_label, output_calibration=True, output_calibration_num_keypoints=OUTPUT_KEYPOINTS, output_initialization=np.linspace( min_label, max_label, num=OUTPUT_KEYPOINTS)) # An AggregateFunction premade model constructed from the given model config. aggregate_function_model = tfl.premade.AggregateFunction( aggregate_function_model_config) # Let's plot our model. tf.keras.utils.plot_model( aggregate_function_model, show_layer_names=False, rankdir='LR')

각 집계 레이어의 출력은 비 정형 입력에 대해 보정된 격자의 평균 출력입니다. 다음은 첫 번째 집계 레이어 내부에서 사용되는 모델입니다.

aggregation_layers = [ layer for layer in aggregate_function_model.layers if isinstance(layer, tfl.layers.Aggregation) ] tf.keras.utils.plot_model( aggregation_layers[0].model, show_layer_names=False, rankdir='LR')

이제 다른 tf.keras.Model과 마찬가지로 모델을 데이터에 맞게 컴파일하고 적합하도록 맞춥니다.

aggregate_function_model.compile( loss='mae', optimizer=tf.keras.optimizers.Adam(LEARNING_RATE)) aggregate_function_model.fit( train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)

모델을 훈련한 후 테스트세트에서 평가할 수 있습니다.

print('Test Set Evaluation...') print(aggregate_function_model.evaluate(test_xs, test_ys))