Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/pt-br/guide/migrate/tensorboard.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Como migrar o TensorBoard: o kit de ferramentas de visualização do TensorFlow

O TensorBoard é uma ferramenta integrada para fornecer medições e visualizações no TensorFlow. Métricas comuns de experimentos de aprendizado de máquina, como precisão e perdas, podem ser rastreadas e exibidas no TensorBoard. O TensorBoard é compatível com o código do TensorFlow 1 e 2.

No TensorFlow 1, o tf.estimator.Estimator salva resumos para TensorBoard por padrão. Em comparação, no TensorFlow 2, os resumos podem ser salvos usando um callback tf.keras.callbacks.TensorBoard.

Este guia demonstra como usar o TensorBoard, primeiro, no TensorFlow 1 com Estimators e, em seguida, como realizar o processo equivalente no TensorFlow 2.

Configuração

import tensorflow.compat.v1 as tf1 import tensorflow as tf import tempfile import numpy as np import datetime %load_ext tensorboard
mnist = tf.keras.datasets.mnist # The MNIST dataset. (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0

TensorFlow 1: TensorBoard com tf.estimator

Neste exemplo do TensorFlow 1, você instancia um tf.estimator.DNNClassifier, faz seu treinamento e avaliação no dataset MNIST e usa o TensorBoard para exibir as métricas:

%reload_ext tensorboard feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])] config = tf1.estimator.RunConfig(save_summary_steps=1, save_checkpoints_steps=1) path = tempfile.mkdtemp() classifier = tf1.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[256, 32], optimizer=tf1.train.AdamOptimizer(0.001), n_classes=10, dropout=0.1, model_dir=path, config = config ) train_input_fn = tf1.estimator.inputs.numpy_input_fn( x={"x": x_train}, y=y_train.astype(np.int32), num_epochs=10, batch_size=50, shuffle=True, ) test_input_fn = tf1.estimator.inputs.numpy_input_fn( x={"x": x_test}, y=y_test.astype(np.int32), num_epochs=10, shuffle=False ) train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10) eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn, steps=10, throttle_secs=0) tf1.estimator.train_and_evaluate(estimator=classifier, train_spec=train_spec, eval_spec=eval_spec)
%tensorboard --logdir {classifier.model_dir}

TensorFlow 2: TensorBoard com callback Keras e Model.fit

Neste exemplo com TensorFlow 2, você cria e armazena logs com o callback tf.keras.callbacks.TensorBoard e treina o modelo. O callback rastreia a exatidão e a perda por época. Ele é passado para Model.fit na lista callbacks.

%reload_ext tensorboard def create_model(): return tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28), name='layers_flatten'), tf.keras.layers.Dense(512, activation='relu', name='layers_dense'), tf.keras.layers.Dropout(0.2, name='layers_dropout'), tf.keras.layers.Dense(10, activation='softmax', name='layers_dense_2') ]) model = create_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'], steps_per_execution=10) log_dir = tempfile.mkdtemp() tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=1) # Enable histogram computation with each epoch. model.fit(x=x_train, y=y_train, epochs=10, validation_data=(x_test, y_test), callbacks=[tensorboard_callback])
%tensorboard --logdir {tensorboard_callback.log_dir}

Próximos passos