Path: blob/master/site/pt-br/hub/tutorials/movenet.ipynb
25118 views
Copyright 2021 The TensorFlow Hub Authors.
Licensed under the Apache License, Version 2.0 (the "License");
# Copyright 2021 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
MoveNet – Modelo de detecção de poses preciso e ultrarrápido
MoveNet é um modelo preciso e ultrarrápido que detecta 17 pontos-chave do corpo. O modelo é disponibilizado no TF Hub com duas variantes, conhecidas como Lightning e Thunder. A variante Lightning é destinada a aplicações em que a latência é crítica, enquanto a variante Thunder é destinada a aplicações que requerem uma alta exatidão. Os dois modelos são executados mais rápidos que em tempo real (mais de 30 quadros por segundo) na maioria dos computadores, notebooks e celulares modernos, o que é essencial para aplicativos de exercícios, saúde e bem-estar em tempo real.
*Imagens baixadas de Pexels (https://www.pexels.com/)
Este Colab descreve como carregar o MoveNet e executar a inferência para a imagem e vídeo de entrada abaixo.
Observação: confira a demonstração em tempo real para ver como o modelo funciona!
Estimativa de pose humana usando o MoveNet
Veja as bibliotecas e importações
!pip install -q imageio !pip install -q opencv-python !pip install -q git+https://github.com/tensorflow/docs
import tensorflow as tf import tensorflow_hub as hub from tensorflow_docs.vis import embed import numpy as np import cv2 # Import matplotlib libraries from matplotlib import pyplot as plt from matplotlib.collections import LineCollection import matplotlib.patches as patches # Some modules to display an animation using imageio. import imageio from IPython.display import HTML, display
#@title Helper functions for visualization # Dictionary that maps from joint names to keypoint indices. KEYPOINT_DICT = { 'nose': 0, 'left_eye': 1, 'right_eye': 2, 'left_ear': 3, 'right_ear': 4, 'left_shoulder': 5, 'right_shoulder': 6, 'left_elbow': 7, 'right_elbow': 8, 'left_wrist': 9, 'right_wrist': 10, 'left_hip': 11, 'right_hip': 12, 'left_knee': 13, 'right_knee': 14, 'left_ankle': 15, 'right_ankle': 16 } # Maps bones to a matplotlib color name. KEYPOINT_EDGE_INDS_TO_COLOR = { (0, 1): 'm', (0, 2): 'c', (1, 3): 'm', (2, 4): 'c', (0, 5): 'm', (0, 6): 'c', (5, 7): 'm', (7, 9): 'm', (6, 8): 'c', (8, 10): 'c', (5, 6): 'y', (5, 11): 'm', (6, 12): 'c', (11, 12): 'y', (11, 13): 'm', (13, 15): 'm', (12, 14): 'c', (14, 16): 'c' } def _keypoints_and_edges_for_display(keypoints_with_scores, height, width, keypoint_threshold=0.11): """Returns high confidence keypoints and edges for visualization. Args: keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. height: height of the image in pixels. width: width of the image in pixels. keypoint_threshold: minimum confidence score for a keypoint to be visualized. Returns: A (keypoints_xy, edges_xy, edge_colors) containing: * the coordinates of all keypoints of all detected entities; * the coordinates of all skeleton edges of all detected entities; * the colors in which the edges should be plotted. """ keypoints_all = [] keypoint_edges_all = [] edge_colors = [] num_instances, _, _, _ = keypoints_with_scores.shape for idx in range(num_instances): kpts_x = keypoints_with_scores[0, idx, :, 1] kpts_y = keypoints_with_scores[0, idx, :, 0] kpts_scores = keypoints_with_scores[0, idx, :, 2] kpts_absolute_xy = np.stack( [width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1) kpts_above_thresh_absolute = kpts_absolute_xy[ kpts_scores > keypoint_threshold, :] keypoints_all.append(kpts_above_thresh_absolute) for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items(): if (kpts_scores[edge_pair[0]] > keypoint_threshold and kpts_scores[edge_pair[1]] > keypoint_threshold): x_start = kpts_absolute_xy[edge_pair[0], 0] y_start = kpts_absolute_xy[edge_pair[0], 1] x_end = kpts_absolute_xy[edge_pair[1], 0] y_end = kpts_absolute_xy[edge_pair[1], 1] line_seg = np.array([[x_start, y_start], [x_end, y_end]]) keypoint_edges_all.append(line_seg) edge_colors.append(color) if keypoints_all: keypoints_xy = np.concatenate(keypoints_all, axis=0) else: keypoints_xy = np.zeros((0, 17, 2)) if keypoint_edges_all: edges_xy = np.stack(keypoint_edges_all, axis=0) else: edges_xy = np.zeros((0, 2, 2)) return keypoints_xy, edges_xy, edge_colors def draw_prediction_on_image( image, keypoints_with_scores, crop_region=None, close_figure=False, output_image_height=None): """Draws the keypoint predictions on image. Args: image: A numpy array with shape [height, width, channel] representing the pixel values of the input image. keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing the keypoint coordinates and scores returned from the MoveNet model. crop_region: A dictionary that defines the coordinates of the bounding box of the crop region in normalized coordinates (see the init_crop_region function below for more detail). If provided, this function will also draw the bounding box on the image. output_image_height: An integer indicating the height of the output image. Note that the image aspect ratio will be the same as the input image. Returns: A numpy array with shape [out_height, out_width, channel] representing the image overlaid with keypoint predictions. """ height, width, channel = image.shape aspect_ratio = float(width) / height fig, ax = plt.subplots(figsize=(12 * aspect_ratio, 12)) # To remove the huge white borders fig.tight_layout(pad=0) ax.margins(0) ax.set_yticklabels([]) ax.set_xticklabels([]) plt.axis('off') im = ax.imshow(image) line_segments = LineCollection([], linewidths=(4), linestyle='solid') ax.add_collection(line_segments) # Turn off tick labels scat = ax.scatter([], [], s=60, color='#FF1493', zorder=3) (keypoint_locs, keypoint_edges, edge_colors) = _keypoints_and_edges_for_display( keypoints_with_scores, height, width) line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_edges.shape[0]: line_segments.set_segments(keypoint_edges) line_segments.set_color(edge_colors) if keypoint_locs.shape[0]: scat.set_offsets(keypoint_locs) if crop_region is not None: xmin = max(crop_region['x_min'] * width, 0.0) ymin = max(crop_region['y_min'] * height, 0.0) rec_width = min(crop_region['x_max'], 0.99) * width - xmin rec_height = min(crop_region['y_max'], 0.99) * height - ymin rect = patches.Rectangle( (xmin,ymin),rec_width,rec_height, linewidth=1,edgecolor='b',facecolor='none') ax.add_patch(rect) fig.canvas.draw() image_from_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) image_from_plot = image_from_plot.reshape( fig.canvas.get_width_height()[::-1] + (3,)) plt.close(fig) if output_image_height is not None: output_image_width = int(output_image_height / height * width) image_from_plot = cv2.resize( image_from_plot, dsize=(output_image_width, output_image_height), interpolation=cv2.INTER_CUBIC) return image_from_plot def to_gif(images, duration): """Converts image sequence (4D numpy array) to gif.""" imageio.mimsave('./animation.gif', images, duration=duration) return embed.embed_file('./animation.gif') def progress(value, max=100): return HTML(""" <progress value='{value}' max='{max}', style='width: 100%' > {value} </progress> """.format(value=value, max=max))
Carregue o modelo pelo TF Hub
model_name = "movenet_lightning" #@param ["movenet_lightning", "movenet_thunder", "movenet_lightning_f16.tflite", "movenet_thunder_f16.tflite", "movenet_lightning_int8.tflite", "movenet_thunder_int8.tflite"] if "tflite" in model_name: if "movenet_lightning_f16" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4?lite-format=tflite input_size = 192 elif "movenet_thunder_f16" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite input_size = 256 elif "movenet_lightning_int8" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/int8/4?lite-format=tflite input_size = 192 elif "movenet_thunder_int8" in model_name: !wget -q -O model.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/int8/4?lite-format=tflite input_size = 256 else: raise ValueError("Unsupported model name: %s" % model_name) # Initialize the TFLite interpreter interpreter = tf.lite.Interpreter(model_path="model.tflite") interpreter.allocate_tensors() def movenet(input_image): """Runs detection on an input image. Args: input_image: A [1, height, width, 3] tensor represents the input image pixels. Note that the height/width should already be resized and match the expected input resolution of the model before passing into this function. Returns: A [1, 1, 17, 3] float numpy array representing the predicted keypoint coordinates and scores. """ # TF Lite format expects tensor type of uint8. input_image = tf.cast(input_image, dtype=tf.uint8) input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]['index'], input_image.numpy()) # Invoke inference. interpreter.invoke() # Get the model prediction. keypoints_with_scores = interpreter.get_tensor(output_details[0]['index']) return keypoints_with_scores else: if "movenet_lightning" in model_name: module = hub.load("https://tfhub.dev/google/movenet/singlepose/lightning/4") input_size = 192 elif "movenet_thunder" in model_name: module = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4") input_size = 256 else: raise ValueError("Unsupported model name: %s" % model_name) def movenet(input_image): """Runs detection on an input image. Args: input_image: A [1, height, width, 3] tensor represents the input image pixels. Note that the height/width should already be resized and match the expected input resolution of the model before passing into this function. Returns: A [1, 1, 17, 3] float numpy array representing the predicted keypoint coordinates and scores. """ model = module.signatures['serving_default'] # SavedModel format expects tensor type of int32. input_image = tf.cast(input_image, dtype=tf.int32) # Run model inference. outputs = model(input_image) # Output is a [1, 1, 17, 3] tensor. keypoints_with_scores = outputs['output_0'].numpy() return keypoints_with_scores
Exemplo com uma única imagem
Esta sessão demonstra um exemplo mínimo funcional de execução do modelo em uma única imagem para prever os 17 pontos-chave humanos.
Carregue a imagem de entrada
!curl -o input_image.jpeg https://images.pexels.com/photos/4384679/pexels-photo-4384679.jpeg --silent
# Load the input image. image_path = 'input_image.jpeg' image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image)
Execute a inferência
# Resize and pad the image to keep the aspect ratio and fit the expected size. input_image = tf.expand_dims(image, axis=0) input_image = tf.image.resize_with_pad(input_image, input_size, input_size) # Run model inference. keypoints_with_scores = movenet(input_image) # Visualize the predictions with image. display_image = tf.expand_dims(image, axis=0) display_image = tf.cast(tf.image.resize_with_pad( display_image, 1280, 1280), dtype=tf.int32) output_overlay = draw_prediction_on_image( np.squeeze(display_image.numpy(), axis=0), keypoints_with_scores) plt.figure(figsize=(5, 5)) plt.imshow(output_overlay) _ = plt.axis('off')
Exemplo de um vídeo (sequência de imagens)
Esta seção demonstra como aplicar um corte inteligente baseado em detecções do quadro anterior quando a entrada é uma sequência de quadros, o que permite que o modelo dedique sua atenção e recursos ao objeto principal, resultando em uma qualidade de previsão muito melhor sem sacrificar a velocidade.
#@title Cropping Algorithm # Confidence score to determine whether a keypoint prediction is reliable. MIN_CROP_KEYPOINT_SCORE = 0.2 def init_crop_region(image_height, image_width): """Defines the default crop region. The function provides the initial crop region (pads the full image from both sides to make it a square image) when the algorithm cannot reliably determine the crop region from the previous frame. """ if image_width > image_height: box_height = image_width / image_height box_width = 1.0 y_min = (image_height / 2 - image_width / 2) / image_height x_min = 0.0 else: box_height = 1.0 box_width = image_height / image_width y_min = 0.0 x_min = (image_width / 2 - image_height / 2) / image_width return { 'y_min': y_min, 'x_min': x_min, 'y_max': y_min + box_height, 'x_max': x_min + box_width, 'height': box_height, 'width': box_width } def torso_visible(keypoints): """Checks whether there are enough torso keypoints. This function checks whether the model is confident at predicting one of the shoulders/hips which is required to determine a good crop region. """ return ((keypoints[0, 0, KEYPOINT_DICT['left_hip'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_hip'], 2] > MIN_CROP_KEYPOINT_SCORE) and (keypoints[0, 0, KEYPOINT_DICT['left_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE or keypoints[0, 0, KEYPOINT_DICT['right_shoulder'], 2] > MIN_CROP_KEYPOINT_SCORE)) def determine_torso_and_body_range( keypoints, target_keypoints, center_y, center_x): """Calculates the maximum distance from each keypoints to the center location. The function returns the maximum distances from the two sets of keypoints: full 17 keypoints and 4 torso keypoints. The returned information will be used to determine the crop size. See determineCropRegion for more detail. """ torso_joints = ['left_shoulder', 'right_shoulder', 'left_hip', 'right_hip'] max_torso_yrange = 0.0 max_torso_xrange = 0.0 for joint in torso_joints: dist_y = abs(center_y - target_keypoints[joint][0]) dist_x = abs(center_x - target_keypoints[joint][1]) if dist_y > max_torso_yrange: max_torso_yrange = dist_y if dist_x > max_torso_xrange: max_torso_xrange = dist_x max_body_yrange = 0.0 max_body_xrange = 0.0 for joint in KEYPOINT_DICT.keys(): if keypoints[0, 0, KEYPOINT_DICT[joint], 2] < MIN_CROP_KEYPOINT_SCORE: continue dist_y = abs(center_y - target_keypoints[joint][0]); dist_x = abs(center_x - target_keypoints[joint][1]); if dist_y > max_body_yrange: max_body_yrange = dist_y if dist_x > max_body_xrange: max_body_xrange = dist_x return [max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange] def determine_crop_region( keypoints, image_height, image_width): """Determines the region to crop the image for the model to run inference on. The algorithm uses the detected joints from the previous frame to estimate the square region that encloses the full body of the target person and centers at the midpoint of two hip joints. The crop size is determined by the distances between each joints and the center point. When the model is not confident with the four torso joint predictions, the function returns a default crop which is the full image padded to square. """ target_keypoints = {} for joint in KEYPOINT_DICT.keys(): target_keypoints[joint] = [ keypoints[0, 0, KEYPOINT_DICT[joint], 0] * image_height, keypoints[0, 0, KEYPOINT_DICT[joint], 1] * image_width ] if torso_visible(keypoints): center_y = (target_keypoints['left_hip'][0] + target_keypoints['right_hip'][0]) / 2; center_x = (target_keypoints['left_hip'][1] + target_keypoints['right_hip'][1]) / 2; (max_torso_yrange, max_torso_xrange, max_body_yrange, max_body_xrange) = determine_torso_and_body_range( keypoints, target_keypoints, center_y, center_x) crop_length_half = np.amax( [max_torso_xrange * 1.9, max_torso_yrange * 1.9, max_body_yrange * 1.2, max_body_xrange * 1.2]) tmp = np.array( [center_x, image_width - center_x, center_y, image_height - center_y]) crop_length_half = np.amin( [crop_length_half, np.amax(tmp)]); crop_corner = [center_y - crop_length_half, center_x - crop_length_half]; if crop_length_half > max(image_width, image_height) / 2: return init_crop_region(image_height, image_width) else: crop_length = crop_length_half * 2; return { 'y_min': crop_corner[0] / image_height, 'x_min': crop_corner[1] / image_width, 'y_max': (crop_corner[0] + crop_length) / image_height, 'x_max': (crop_corner[1] + crop_length) / image_width, 'height': (crop_corner[0] + crop_length) / image_height - crop_corner[0] / image_height, 'width': (crop_corner[1] + crop_length) / image_width - crop_corner[1] / image_width } else: return init_crop_region(image_height, image_width) def crop_and_resize(image, crop_region, crop_size): """Crops and resize the image to prepare for the model input.""" boxes=[[crop_region['y_min'], crop_region['x_min'], crop_region['y_max'], crop_region['x_max']]] output_image = tf.image.crop_and_resize( image, box_indices=[0], boxes=boxes, crop_size=crop_size) return output_image def run_inference(movenet, image, crop_region, crop_size): """Runs model inferece on the cropped region. The function runs the model inference on the cropped region and updates the model output to the original image coordinate system. """ image_height, image_width, _ = image.shape input_image = crop_and_resize( tf.expand_dims(image, axis=0), crop_region, crop_size=crop_size) # Run model inference. keypoints_with_scores = movenet(input_image) # Update the coordinates. for idx in range(17): keypoints_with_scores[0, 0, idx, 0] = ( crop_region['y_min'] * image_height + crop_region['height'] * image_height * keypoints_with_scores[0, 0, idx, 0]) / image_height keypoints_with_scores[0, 0, idx, 1] = ( crop_region['x_min'] * image_width + crop_region['width'] * image_width * keypoints_with_scores[0, 0, idx, 1]) / image_width return keypoints_with_scores
Carregue a sequência de imagens de entrada
!wget -q -O dance.gif https://github.com/tensorflow/tfjs-models/raw/master/pose-detection/assets/dance_input.gif
# Load the input image. image_path = 'dance.gif' image = tf.io.read_file(image_path) image = tf.image.decode_gif(image)
Execute a inferência com o algoritmo de corte
# Load the input image. num_frames, image_height, image_width, _ = image.shape crop_region = init_crop_region(image_height, image_width) output_images = [] bar = display(progress(0, num_frames-1), display_id=True) for frame_idx in range(num_frames): keypoints_with_scores = run_inference( movenet, image[frame_idx, :, :, :], crop_region, crop_size=[input_size, input_size]) output_images.append(draw_prediction_on_image( image[frame_idx, :, :, :].numpy().astype(np.int32), keypoints_with_scores, crop_region=None, close_figure=True, output_image_height=300)) crop_region = determine_crop_region( keypoints_with_scores, image_height, image_width) bar.update(progress(frame_idx, num_frames-1)) # Prepare gif visualization. output = np.stack(output_images, axis=0) to_gif(output, duration=100)