Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/pt-br/io/tutorials/elasticsearch.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Transmissão de dados do Elasticsearch usando o TensorFlow IO

Visão geral

Este tutorial aborda a transmissão de dados de um cluster Elasticsearch para um tf.data.Dataset que depois é usado em conjunto com tf.keras para treinamento e inferência.

O Elasticsearch é principalmente um mecanismo de pesquisa distribuída com suporte ao armazenamento de dados numéricos, estruturados, não estruturados, geoespaciais, etc. Neste tutorial, usamos um dataset com registros estruturados.

OBSERVAÇÃO: ter uma compreensão básica do armazenamento do Elasticsearch ajudará a acompanhar o tutorial com facilidade.

Configure os pacotes

O elasticsearch é utilizado para preparar e armazenar os dados dentro de índices do Elasticsearch somente para fins de demonstração. Em clusters de produção reais com diversos nós, o cluster pode receber os dados de conectores como logstash, etc.

Após os dados estarem disponíveis no cluster Elasticsearch cluster, somente o tensorflow-io é necessário para transmitir os dados para os modelos.

Instale os pacotes do TensorFlow IO e Elasticsearch obrigatórios

!pip install tensorflow-io !pip install elasticsearch
Requirement already satisfied: tensorflow-io in /usr/local/lib/python3.6/dist-packages (0.16.0) Requirement already satisfied: tensorflow<2.4.0,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-io) (2.3.0) Requirement already satisfied: keras-preprocessing<1.2,>=1.1.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.1.2) Requirement already satisfied: numpy<1.19.0,>=1.16.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.18.5) Requirement already satisfied: scipy==1.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.4.1) Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.10.0) Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.3.0) Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.10.0) Requirement already satisfied: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.33.2) Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.35.1) Requirement already satisfied: astunparse==1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.6.3) Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.15.0) Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.2.0) Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.1.0) Requirement already satisfied: tensorboard<3,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.3.0) Requirement already satisfied: tensorflow-estimator<2.4.0,>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.3.0) Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.12.1) Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.12.4) Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.3.3) Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.23.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.7.0) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.0.1) Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (50.3.2) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.17.2) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.3.3) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.4.2) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2020.6.20) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.10) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.2.8) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (4.1.1) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3" in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (4.6) Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.6/dist-packages (from markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (2.0.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (1.3.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (0.4.8) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.4.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<3,>=2.3.0->tensorflow<2.4.0,>=2.3.0->tensorflow-io) (3.1.0) Requirement already satisfied: elasticsearch in /usr/local/lib/python3.6/dist-packages (7.9.1) Requirement already satisfied: urllib3>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from elasticsearch) (1.24.3) Requirement already satisfied: certifi in /usr/local/lib/python3.6/dist-packages (from elasticsearch) (2020.6.20)

Importe os pacotes

import os import time from sklearn.model_selection import train_test_split from elasticsearch import Elasticsearch import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing import tensorflow_io as tfio

Valide as importações de tf e tfio

print("tensorflow-io version: {}".format(tfio.__version__)) print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.16.0 tensorflow version: 2.3.0

Baixe e configure a instância do Elasticsearch

Para fins de demonstração, a versão de código aberto do pacote Elasticsearch é usada.

%%bash wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512 tar -xzf elasticsearch-oss-7.9.2-linux-x86_64.tar.gz sudo chown -R daemon:daemon elasticsearch-7.9.2/ shasum -a 512 -c elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512
elasticsearch-oss-7.9.2-linux-x86_64.tar.gz: OK

Execute a instância como um processo daemon:

%%bash --bg sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch
Starting job # 0 in a separate thread.
# Sleep for few seconds to let the instance start. time.sleep(20)

Após a inicialização da instância, use o comando grep elasticsearch na lista de processos para confirmar a disponibilidade.

%%bash ps -ef | grep elasticsearch
root 144 142 0 21:24 ? 00:00:00 sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch daemon 145 144 86 21:24 ? 00:00:17 /content/elasticsearch-7.9.2/jdk/bin/java -Xshare:auto -Des.networkaddress.cache.ttl=60 -Des.networkaddress.cache.negative.ttl=10 -XX:+AlwaysPreTouch -Xss1m -Djava.awt.headless=true -Dfile.encoding=UTF-8 -Djna.nosys=true -XX:-OmitStackTraceInFastThrow -XX:+ShowCodeDetailsInExceptionMessages -Dio.netty.noUnsafe=true -Dio.netty.noKeySetOptimization=true -Dio.netty.recycler.maxCapacityPerThread=0 -Dio.netty.allocator.numDirectArenas=0 -Dlog4j.shutdownHookEnabled=false -Dlog4j2.disable.jmx=true -Djava.locale.providers=SPI,COMPAT -Xms1g -Xmx1g -XX:+UseG1GC -XX:G1ReservePercent=25 -XX:InitiatingHeapOccupancyPercent=30 -Djava.io.tmpdir=/tmp/elasticsearch-16913031424109346409 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=data -XX:ErrorFile=logs/hs_err_pid%p.log -Xlog:gc*,gc+age=trace,safepoint:file=logs/gc.log:utctime,pid,tags:filecount=32,filesize=64m -XX:MaxDirectMemorySize=536870912 -Des.path.home=/content/elasticsearch-7.9.2 -Des.path.conf=/content/elasticsearch-7.9.2/config -Des.distribution.flavor=oss -Des.distribution.type=tar -Des.bundled_jdk=true -cp /content/elasticsearch-7.9.2/lib/* org.elasticsearch.bootstrap.Elasticsearch root 382 380 0 21:24 ? 00:00:00 grep elasticsearch

Faça uma consulta ao endpoint base para recuperar as informações sobre o cluster.

%%bash curl -sX GET "localhost:9200/"
{ "name" : "d1bc7d054c69", "cluster_name" : "elasticsearch", "cluster_uuid" : "P8YXfKqYS-OS3k9CdMmlsw", "version" : { "number" : "7.9.2", "build_flavor" : "oss", "build_type" : "tar", "build_hash" : "d34da0ea4a966c4e49417f2da2f244e3e97b4e6e", "build_date" : "2020-09-23T00:45:33.626720Z", "build_snapshot" : false, "lucene_version" : "8.6.2", "minimum_wire_compatibility_version" : "6.8.0", "minimum_index_compatibility_version" : "6.0.0-beta1" }, "tagline" : "You Know, for Search" }

Explore o dataset

Neste tutorial, vamos baixar o dataset PetFinder e alimentar o Elasticsearch com dados manualmente. O objeto deste problema de classificação é prever se o animal de estimação será adotado ou não.

dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip' csv_file = 'datasets/petfinder-mini/petfinder-mini.csv' tf.keras.utils.get_file('petfinder_mini.zip', dataset_url, extract=True, cache_dir='.') pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip 1671168/1668792 [==============================] - 0s 0us/step
pf_df.head()

Neste tutorial, são feitas modificações na coluna de rótulo: 0 indicará que o animal doméstico não foi adotado, e 1 indicará que foi.

# In the original dataset "4" indicates the pet was not adopted. pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1) # Drop un-used columns. pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns len(pf_df), len(pf_df.columns)
(11537, 14)

Divida o dataset

train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True) print("Number of training samples: ",len(train_df)) print("Number of testing sample: ",len(test_df))
Number of training samples: 8075 Number of testing sample: 3462

Armazene os dados de treinamento e teste em índices do Elasticsearch

Ao armazenar os dados no cluster local do Elasticsearch, é simulado um ambiente para recuperação contínua de dados remotos para treinamento e inferência.

ES_NODES = "http://localhost:9200" def prepare_es_data(index, doc_type, df): records = df.to_dict(orient="records") es_data = [] for idx, record in enumerate(records): meta_dict = { "index": { "_index": index, "_type": doc_type, "_id": idx } } es_data.append(meta_dict) es_data.append(record) return es_data def index_es_data(index, es_data): es_client = Elasticsearch(hosts = [ES_NODES]) if es_client.indices.exists(index): print("deleting the '{}' index.".format(index)) res = es_client.indices.delete(index=index) print("Response from server: {}".format(res)) print("creating the '{}' index.".format(index)) res = es_client.indices.create(index=index) print("Response from server: {}".format(res)) print("bulk index the data") res = es_client.bulk(index=index, body=es_data, refresh = True) print("Errors: {}, Num of records indexed: {}".format(res["errors"], len(res["items"])))
train_es_data = prepare_es_data(index="train", doc_type="pet", df=train_df) test_es_data = prepare_es_data(index="test", doc_type="pet", df=test_df) index_es_data(index="train", es_data=train_es_data) time.sleep(3) index_es_data(index="test", es_data=test_es_data)
creating the 'train' index. Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'train'} bulk index the data
/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/base.py:190: ElasticsearchDeprecationWarning: [types removal] Specifying types in bulk requests is deprecated. warnings.warn(message, category=ElasticsearchDeprecationWarning)
Errors: False, Num of records indexed: 8075 creating the 'test' index. Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'test'} bulk index the data Errors: False, Num of records indexed: 3462

Prepare os datasets tfio

Quando os dados estiverem disponíveis no cluster, somente tensorflow-io é necessário para transmitir os dados dos índices. A classe elasticsearch.ElasticsearchIODataset é utilizada para essa finalidade. Ela herda de tf.data.Dataset e, portanto, expõe todas as funcionalidades úteis de tf.data.Dataset de forma integrada.

Dataset de treinamento

BATCH_SIZE=32 HEADERS = {"Content-Type": "application/json"} train_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset( nodes=[ES_NODES], index="train", doc_type="pet", headers=HEADERS ) # Prepare a tuple of (features, label) train_ds = train_ds.map(lambda v: (v, v.pop("target"))) train_ds = train_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health

Dataset de teste

test_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset( nodes=[ES_NODES], index="test", doc_type="pet", headers=HEADERS ) # Prepare a tuple of (features, label) test_ds = test_ds.map(lambda v: (v, v.pop("target"))) test_ds = test_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health

Defina as camadas de pré-processamento do Keras

Conforme o tutorial sobre dados estruturados, é recomendável usar as camadas de pré-processamento do Keras, pois elas são mais intuitivas e podem ser integradas aos modelos com facilidade. Porém, as feature_columns (colunas de características) padrão também podem ser usadas.

Para entender melhor as preprocessing_layers na classificação de dados estruturados, confira o tutorial sobre dados estruturados.

def get_normalization_layer(name, dataset): # Create a Normalization layer for our feature. normalizer = preprocessing.Normalization() # Prepare a Dataset that only yields our feature. feature_ds = dataset.map(lambda x, y: x[name]) # Learn the statistics of the data. normalizer.adapt(feature_ds) return normalizer def get_category_encoding_layer(name, dataset, dtype, max_tokens=None): # Create a StringLookup layer which will turn strings into integer indices if dtype == 'string': index = preprocessing.StringLookup(max_tokens=max_tokens) else: index = preprocessing.IntegerLookup(max_values=max_tokens) # Prepare a Dataset that only yields our feature feature_ds = dataset.map(lambda x, y: x[name]) # Learn the set of possible values and assign them a fixed integer index. index.adapt(feature_ds) # Create a Discretization for our integer indices. encoder = preprocessing.CategoryEncoding(max_tokens=index.vocab_size()) # Prepare a Dataset that only yields our feature. feature_ds = feature_ds.map(index) # Learn the space of possible indices. encoder.adapt(feature_ds) # Apply one-hot encoding to our indices. The lambda function captures the # layer so you can use them, or include them in the functional model later. return lambda feature: encoder(index(feature))

Busque um lote e observe as características de um registro de amostra, o que ajudará a definir as camadas de pré-processamento do Keras para treinar o modelo do tf.keras.

ds_iter = iter(train_ds) features, label = next(ds_iter) {key: value.numpy()[0] for key,value in features.items()}
{'Age': 2, 'Breed1': b'Tabby', 'Color1': b'Black', 'Color2': b'Cream', 'Fee': 0, 'FurLength': b'Short', 'Gender': b'Male', 'Health': b'Healthy', 'MaturitySize': b'Small', 'PhotoAmt': 4, 'Sterilized': b'No', 'Type': b'Cat', 'Vaccinated': b'No'}

Escolha um subconjunto de características.

all_inputs = [] encoded_features = [] # Numeric features. for header in ['PhotoAmt', 'Fee']: numeric_col = tf.keras.Input(shape=(1,), name=header) normalization_layer = get_normalization_layer(header, train_ds) encoded_numeric_col = normalization_layer(numeric_col) all_inputs.append(numeric_col) encoded_features.append(encoded_numeric_col) # Categorical features encoded as string. categorical_cols = ['Type', 'Color1', 'Color2', 'Gender', 'MaturitySize', 'FurLength', 'Vaccinated', 'Sterilized', 'Health', 'Breed1'] for header in categorical_cols: categorical_col = tf.keras.Input(shape=(1,), name=header, dtype='string') encoding_layer = get_category_encoding_layer(header, train_ds, dtype='string', max_tokens=5) encoded_categorical_col = encoding_layer(categorical_col) all_inputs.append(categorical_col) encoded_features.append(encoded_categorical_col)

Crie, compile e treine o modelo

# Set the parameters OPTIMIZER="adam" LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True) METRICS=['accuracy'] EPOCHS=10
# Convert the feature columns into a tf.keras layer all_features = tf.keras.layers.concatenate(encoded_features) # design/build the model x = tf.keras.layers.Dense(32, activation="relu")(all_features) x = tf.keras.layers.Dropout(0.5)(x) x = tf.keras.layers.Dense(64, activation="relu")(x) x = tf.keras.layers.Dropout(0.5)(x) output = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(all_inputs, output) tf.keras.utils.plot_model(model, rankdir='LR', show_shapes=True)
Image in a Jupyter notebook
# compile the model model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model. [n for n in tensors.keys() if n not in ref_input_names])
253/253 [==============================] - 4s 14ms/step - loss: 0.6169 - accuracy: 0.6042 Epoch 2/10 253/253 [==============================] - 4s 14ms/step - loss: 0.5634 - accuracy: 0.6937 Epoch 3/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5573 - accuracy: 0.6981 Epoch 4/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5528 - accuracy: 0.7087 Epoch 5/10 253/253 [==============================] - 4s 14ms/step - loss: 0.5512 - accuracy: 0.7173 Epoch 6/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5456 - accuracy: 0.7219 Epoch 7/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5397 - accuracy: 0.7283 Epoch 8/10 253/253 [==============================] - 4s 14ms/step - loss: 0.5385 - accuracy: 0.7331 Epoch 9/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5355 - accuracy: 0.7326 Epoch 10/10 253/253 [==============================] - 4s 15ms/step - loss: 0.5412 - accuracy: 0.7321
<tensorflow.python.keras.callbacks.History at 0x7f5c235112e8>

Faça a inferência com os dados de teste

res = model.evaluate(test_ds) print("test loss, test acc:", res)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model. [n for n in tensors.keys() if n not in ref_input_names])
109/109 [==============================] - 2s 15ms/step - loss: 0.5344 - accuracy: 0.7421 test loss, test acc: [0.534355640411377, 0.7420566082000732]

Observação: como o objetivo deste tutorial é demonstrar a capacidade do TensorFlow IO de transmitir dados do Elasticsearch e treinar modelos do tf.keras diretamente, aumentar a exatidão dos modelos está fora do escopo atual. Porém, o usuário pode explorar o dataset e fazer experimentos com as colunas de características e arquiteturas do modelo para ter um melhor desempenho ao fazer a classificação.