Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/pt-br/io/tutorials/mongodb.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Datasets do Tensorflow a partir de coleções do MongoDB

Visão geral

O foco deste tutorial é preparar tf.data.Datasets lendo dados em coleções do MongoDB e usá-los para treinar um modelo do tf.keras.

OBSERVAÇÃO: ter uma compreensão básica do armazenamento do MongoDB ajudará a acompanhar o tutorial com facilidade.

Configure os pacotes

Este tutorial usa o pymongo como pacote helper para criar um novo banco de dados e coleção do mongoDB para armazenar os dados.

Instale os pacotes (helper) do TensorFlow IO e MongoDB obrigatórios

!pip install -q tensorflow-io !pip install -q pymongo
WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages) WARNING: Ignoring invalid distribution -eras (/usr/local/lib/python3.7/dist-packages)

Importe os pacotes

import os import time from pprint import pprint from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing import tensorflow_io as tfio from pymongo import MongoClient

Valide as importações de tf e tfio

print("tensorflow-io version: {}".format(tfio.__version__)) print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.20.0 tensorflow version: 2.6.0

Baixe e configure a instância do MongoDB

Para fins de demonstração, a versão de código aberto do MongoDB é usada.

%%bash sudo apt install -y mongodb >log service mongodb start
* Starting database mongodb ...done.
WARNING: apt does not have a stable CLI interface. Use with caution in scripts. debconf: unable to initialize frontend: Dialog debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 8.) debconf: falling back to frontend: Readline debconf: unable to initialize frontend: Readline debconf: (This frontend requires a controlling tty.) debconf: falling back to frontend: Teletype dpkg-preconfigure: unable to re-open stdin:
# Sleep for few seconds to let the instance start. time.sleep(5)

Após a inicialização da instância, use o comando grep mongo na lista de processos para confirmar a disponibilidade.

%%bash ps -ef | grep mongo
mongodb 580 1 13 17:38 ? 00:00:00 /usr/bin/mongod --config /etc/mongodb.conf root 612 610 0 17:38 ? 00:00:00 grep mongo

Faça uma consulta ao endpoint base para recuperar as informações sobre o cluster.

client = MongoClient() client.list_database_names() # ['admin', 'local']
['admin', 'local']

Explore o dataset

Neste tutorial, vamos baixar o dataset PetFinder e alimentar o MongoDB com dados manualmente. O objeto deste problema de classificação é prever se o animal de estimação será adotado ou não.

dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip' csv_file = 'datasets/petfinder-mini/petfinder-mini.csv' tf.keras.utils.get_file('petfinder_mini.zip', dataset_url, extract=True, cache_dir='.') pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip 1671168/1668792 [==============================] - 0s 0us/step 1679360/1668792 [==============================] - 0s 0us/step
pf_df.head()

Neste tutorial, são feitas modificações na coluna de rótulo: 0 indicará que o animal doméstico não foi adotado, e 1 indicará que foi.

# In the original dataset "4" indicates the pet was not adopted. pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1) # Drop un-used columns. pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns len(pf_df), len(pf_df.columns)
(11537, 14)

Divida o dataset

train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True) print("Number of training samples: ",len(train_df)) print("Number of testing sample: ",len(test_df))
Number of training samples: 8075 Number of testing sample: 3462

Armazene os dados de treinamento e teste em coleções do Mongo

URI = "mongodb://localhost:27017" DATABASE = "tfiodb" TRAIN_COLLECTION = "train" TEST_COLLECTION = "test"
db = client[DATABASE] if "train" not in db.list_collection_names(): db.create_collection(TRAIN_COLLECTION) if "test" not in db.list_collection_names(): db.create_collection(TEST_COLLECTION)
def store_records(collection, records): writer = tfio.experimental.mongodb.MongoDBWriter( uri=URI, database=DATABASE, collection=collection ) for record in records: writer.write(record)
store_records(collection="train", records=train_df.to_dict("records")) time.sleep(2) store_records(collection="test", records=test_df.to_dict("records"))

Prepare os datasets tfio

Quando os dados estiverem disponíveis no cluster, somente a classe mongodb.MongoDBIODataset é utilizada para essa finalidade. Ela herda de tf.data.Dataset e, portanto, expõe todas as funcionalidades úteis de tf.data.Dataset de forma integrada.

Dataset de treinamento

train_ds = tfio.experimental.mongodb.MongoDBIODataset( uri=URI, database=DATABASE, collection=TRAIN_COLLECTION ) train_ds
Connection successful: mongodb://localhost:27017 WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/data/experimental/ops/counter.py:66: scan (from tensorflow.python.data.experimental.ops.scan_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.scan(...) instead WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow_io/python/experimental/mongodb_dataset_ops.py:114: take_while (from tensorflow.python.data.experimental.ops.take_while_ops) is deprecated and will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.take_while(...)
<MongoDBIODataset shapes: (), types: tf.string>

Cada item em train_ds é uma string que precisa ser decodificada em um json. Para fazer isso, você pode selecionar somente um subconjunto das colunas especificando TensorSpec (especificação do tensor).

# Numeric features. numerical_cols = ['PhotoAmt', 'Fee'] SPECS = { "target": tf.TensorSpec(tf.TensorShape([]), tf.int64, name="target"), } for col in numerical_cols: SPECS[col] = tf.TensorSpec(tf.TensorShape([]), tf.int32, name=col) pprint(SPECS)
{'Fee': TensorSpec(shape=(), dtype=tf.int32, name='Fee'), 'PhotoAmt': TensorSpec(shape=(), dtype=tf.int32, name='PhotoAmt'), 'target': TensorSpec(shape=(), dtype=tf.int64, name='target')}
BATCH_SIZE=32 train_ds = train_ds.map( lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS) ) # Prepare a tuple of (features, label) train_ds = train_ds.map(lambda v: (v, v.pop("target"))) train_ds = train_ds.batch(BATCH_SIZE) train_ds
<BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>

Dataset de teste

test_ds = tfio.experimental.mongodb.MongoDBIODataset( uri=URI, database=DATABASE, collection=TEST_COLLECTION ) test_ds = test_ds.map( lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS) ) # Prepare a tuple of (features, label) test_ds = test_ds.map(lambda v: (v, v.pop("target"))) test_ds = test_ds.batch(BATCH_SIZE) test_ds
Connection successful: mongodb://localhost:27017
<BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>

Defina as camadas de pré-processamento do Keras

Conforme o tutorial sobre dados estruturados, é recomendável usar as camadas de pré-processamento do Keras, pois elas são mais intuitivas e podem ser integradas aos modelos com facilidade. Porém, as feature_columns (colunas de características) padrão também podem ser usadas.

Para entender melhor as preprocessing_layers na classificação de dados estruturados, confira o tutorial sobre dados estruturados.

def get_normalization_layer(name, dataset): # Create a Normalization layer for our feature. normalizer = preprocessing.Normalization(axis=None) # Prepare a Dataset that only yields our feature. feature_ds = dataset.map(lambda x, y: x[name]) # Learn the statistics of the data. normalizer.adapt(feature_ds) return normalizer
all_inputs = [] encoded_features = [] for header in numerical_cols: numeric_col = tf.keras.Input(shape=(1,), name=header) normalization_layer = get_normalization_layer(header, train_ds) encoded_numeric_col = normalization_layer(numeric_col) all_inputs.append(numeric_col) encoded_features.append(encoded_numeric_col)

Crie, compile e treine o modelo

# Set the parameters OPTIMIZER="adam" LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True) METRICS=['accuracy'] EPOCHS=10
# Convert the feature columns into a tf.keras layer all_features = tf.keras.layers.concatenate(encoded_features) # design/build the model x = tf.keras.layers.Dense(32, activation="relu")(all_features) x = tf.keras.layers.Dropout(0.5)(x) x = tf.keras.layers.Dense(64, activation="relu")(x) x = tf.keras.layers.Dropout(0.5)(x) output = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(all_inputs, output)
# compile the model model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10 109/109 [==============================] - 1s 2ms/step - loss: 0.6261 - accuracy: 0.4711 Epoch 2/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5939 - accuracy: 0.6967 Epoch 3/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5900 - accuracy: 0.6993 Epoch 4/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5846 - accuracy: 0.7146 Epoch 5/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5824 - accuracy: 0.7178 Epoch 6/10 109/109 [==============================] - 0s 2ms/step - loss: 0.5778 - accuracy: 0.7233 Epoch 7/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5810 - accuracy: 0.7083 Epoch 8/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5791 - accuracy: 0.7149 Epoch 9/10 109/109 [==============================] - 0s 3ms/step - loss: 0.5742 - accuracy: 0.7207 Epoch 10/10 109/109 [==============================] - 0s 2ms/step - loss: 0.5797 - accuracy: 0.7083
<keras.callbacks.History at 0x7f743229fe90>

Faça a inferência com os dados de teste

res = model.evaluate(test_ds) print("test loss, test acc:", res)
109/109 [==============================] - 0s 2ms/step - loss: 0.5696 - accuracy: 0.7383 test loss, test acc: [0.569588840007782, 0.7383015751838684]

Observação: como o objetivo deste tutorial é demonstrar a capacidade do TensorFlow IO de preparar tf.data.Datasets pelo MongoDB e treinar modelos do tf.keras diretamente, aumentar a exatidão dos modelos está fora do escopo atual. Porém, o usuário pode explorar o dataset e fazer experimentos com as colunas de características e arquiteturas do modelo para ter um melhor desempenho ao fazer a classificação.