Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/pt-br/io/tutorials/prometheus.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Carregue métricas a partir de um servidor Prometheus

Atenção: além dos pacotes Python, este notebook usa sudo apt-get install para instalar pacotes de terceiros.

Visão geral

Este tutorial carrega métricas CoreDNS a partir de um servidor Prometheus em um tf.data.Dataset e depois usa o tf.keras para treinamento e inferência.

O CoreDNS é um servidor DNS com foco em descoberta de serviços e é amplamente implantado como parte do cluster de Kubernetes. Por esse motivo, costuma ser monitorado com atenção por operações devops.

Este tutorial é um exemplo do que pode ser usado por devops em busca de automatizar suas operações por meio de aprendizado de máquina.

Configuração e uso

Instale os pacotes tensorflow-io necessários e reinicie o runtime

import os
try: %tensorflow_version 2.x except Exception: pass
TensorFlow 2.x selected.
!pip install tensorflow-io
Requirement already satisfied: tensorflow-io in /usr/local/lib/python3.6/dist-packages (0.12.0) Requirement already satisfied: tensorflow<2.2.0,>=2.1.0 in /tensorflow-2.1.0/python3.6 (from tensorflow-io) (2.1.0) Requirement already satisfied: opt-einsum>=2.3.2 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (3.2.0) Requirement already satisfied: google-pasta>=0.1.6 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.1.8) Requirement already satisfied: tensorflow-estimator<2.2.0,>=2.1.0rc0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (2.1.0) Requirement already satisfied: tensorboard<2.2.0,>=2.1.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (2.1.0) Requirement already satisfied: wheel>=0.26; python_version >= "3" in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.34.2) Requirement already satisfied: grpcio>=1.8.6 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.27.2) Requirement already satisfied: astor>=0.6.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.8.1) Requirement already satisfied: absl-py>=0.7.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.9.0) Requirement already satisfied: termcolor>=1.1.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.1.0) Requirement already satisfied: numpy<2.0,>=1.16.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.18.1) Requirement already satisfied: keras-applications>=1.0.8 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.0.8) Requirement already satisfied: protobuf>=3.8.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (3.11.3) Requirement already satisfied: keras-preprocessing>=1.1.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.1.0) Requirement already satisfied: wrapt>=1.11.1 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.12.0) Requirement already satisfied: gast==0.2.2 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.2.2) Requirement already satisfied: scipy==1.4.1; python_version >= "3" in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.4.1) Requirement already satisfied: six>=1.12.0 in /tensorflow-2.1.0/python3.6 (from tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.14.0) Requirement already satisfied: markdown>=2.6.8 in /tensorflow-2.1.0/python3.6 (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (3.2.1) Requirement already satisfied: setuptools>=41.0.0 in /tensorflow-2.1.0/python3.6 (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (45.2.0) Requirement already satisfied: werkzeug>=0.11.15 in /tensorflow-2.1.0/python3.6 (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.0.0) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /tensorflow-2.1.0/python3.6 (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.4.1) Requirement already satisfied: google-auth<2,>=1.6.3 in /tensorflow-2.1.0/python3.6 (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.11.2) Requirement already satisfied: requests<3,>=2.21.0 in /tensorflow-2.1.0/python3.6 (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (2.23.0) Requirement already satisfied: h5py in /tensorflow-2.1.0/python3.6 (from keras-applications>=1.0.8->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (2.10.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /tensorflow-2.1.0/python3.6 (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.3.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /tensorflow-2.1.0/python3.6 (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.2.8) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /tensorflow-2.1.0/python3.6 (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (4.0.0) Requirement already satisfied: rsa<4.1,>=3.1.4 in /tensorflow-2.1.0/python3.6 (from google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (4.0) Requirement already satisfied: certifi>=2017.4.17 in /tensorflow-2.1.0/python3.6 (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (2019.11.28) Requirement already satisfied: idna<3,>=2.5 in /tensorflow-2.1.0/python3.6 (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (2.9) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /tensorflow-2.1.0/python3.6 (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (1.25.8) Requirement already satisfied: chardet<4,>=3.0.2 in /tensorflow-2.1.0/python3.6 (from requests<3,>=2.21.0->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (3.0.4) Requirement already satisfied: oauthlib>=3.0.0 in /tensorflow-2.1.0/python3.6 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (3.1.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /tensorflow-2.1.0/python3.6 (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2.0,>=2.1.0->tensorflow-io) (0.4.8)
from datetime import datetime import tensorflow as tf import tensorflow_io as tfio

Instale e configure o CoreDNS e o Prometheus

Para fins de demonstração, será usado um CoreDNS local com porta 9053 aberta para receber consultas DNS e porta 9153 (padrão) aberta para expor as métricas para extração. Veja abaixo uma configuração básica de Corefile para o CoreDNS, disponível para download:

.:9053 { prometheus whoami }

Confira mais detalhes sobre a instalação na documentação do CoreDNS.

!curl -s -OL https://github.com/coredns/coredns/releases/download/v1.6.7/coredns_1.6.7_linux_amd64.tgz !tar -xzf coredns_1.6.7_linux_amd64.tgz !curl -s -OL https://raw.githubusercontent.com/tensorflow/io/master/docs/tutorials/prometheus/Corefile !cat Corefile
.:9053 { prometheus whoami }
# Run `./coredns` as a background process. # IPython doesn't recognize `&` in inline bash cells. get_ipython().system_raw('./coredns &')

A próxima etapa é configurar o servidor Prometheus e usá-lo para extrair métricas do CoreDNS expostas na porta 9153, conforme visto acima. O arquivo prometheus.yml para configuração também está disponível para download:

!curl -s -OL https://github.com/prometheus/prometheus/releases/download/v2.15.2/prometheus-2.15.2.linux-amd64.tar.gz !tar -xzf prometheus-2.15.2.linux-amd64.tar.gz --strip-components=1 !curl -s -OL https://raw.githubusercontent.com/tensorflow/io/master/docs/tutorials/prometheus/prometheus.yml !cat prometheus.yml
global: scrape_interval: 1s evaluation_interval: 1s alerting: alertmanagers: - static_configs: - targets: rule_files: scrape_configs: - job_name: 'prometheus' static_configs: - targets: ['localhost:9090'] - job_name: "coredns" static_configs: - targets: ['localhost:9153']
# Run `./prometheus` as a background process. # IPython doesn't recognize `&` in inline bash cells. get_ipython().system_raw('./prometheus &')

Para mostrar alguma atividade, o comando dig deve ser usado para gerar algumas consultas DNS ao servidor CoreDNS configurado:

!sudo apt-get install -y -qq dnsutils
!dig @127.0.0.1 -p 9053 demo1.example.org
; <<>> DiG 9.11.3-1ubuntu1.11-Ubuntu <<>> @127.0.0.1 -p 9053 demo1.example.org ; (1 server found) ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53868 ;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 3 ;; WARNING: recursion requested but not available ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ; COOKIE: 855234f1adcb7a28 (echoed) ;; QUESTION SECTION: ;demo1.example.org. IN A ;; ADDITIONAL SECTION: demo1.example.org. 0 IN A 127.0.0.1 _udp.demo1.example.org. 0 IN SRV 0 0 45361 . ;; Query time: 0 msec ;; SERVER: 127.0.0.1#9053(127.0.0.1) ;; WHEN: Tue Mar 03 22:35:20 UTC 2020 ;; MSG SIZE rcvd: 132
!dig @127.0.0.1 -p 9053 demo2.example.org
; <<>> DiG 9.11.3-1ubuntu1.11-Ubuntu <<>> @127.0.0.1 -p 9053 demo2.example.org ; (1 server found) ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 53163 ;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 3 ;; WARNING: recursion requested but not available ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ; COOKIE: f18b2ba23e13446d (echoed) ;; QUESTION SECTION: ;demo2.example.org. IN A ;; ADDITIONAL SECTION: demo2.example.org. 0 IN A 127.0.0.1 _udp.demo2.example.org. 0 IN SRV 0 0 42194 . ;; Query time: 0 msec ;; SERVER: 127.0.0.1#9053(127.0.0.1) ;; WHEN: Tue Mar 03 22:35:21 UTC 2020 ;; MSG SIZE rcvd: 132

Agora, temos um servidor CoreDNS cujas métricas são extraídas por um servidor Prometheus, prontas para serem consumidas pelo TensorFlow.

Crie um dataset para métricas do CoreDNS e utilize-o no TensorFlow

Crie um dataset para métricas do CoreDNS que estão disponíveis no servidor Prometheus, o que pode ser feito usando tfio.experimental.IODataset.from_prometheus. São necessários dois argumentos, no mínimo. query (consulta) é passada ao servidor Prometheus para selecionar as métricas, e length (tamanho) é o período que você deseja carregar no dataset.

Você pode começar com "coredns_dns_request_count_total" e "5" (segundos) para criar o dataset abaixo. Como foram enviadas duas consultas DNS anteriormente neste tutorial, esperamos que as métricas "coredns_dns_request_count_total" sejam "2.0" no fim da série temporal:

dataset = tfio.experimental.IODataset.from_prometheus( "coredns_dns_request_count_total", 5, endpoint="http://localhost:9090") print("Dataset Spec:\n{}\n".format(dataset.element_spec)) print("CoreDNS Time Series:") for (time, value) in dataset: # time is milli second, convert to data time: time = datetime.fromtimestamp(time // 1000) print("{}: {}".format(time, value['coredns']['localhost:9153']['coredns_dns_request_count_total']))
Dataset Spec: (TensorSpec(shape=(), dtype=tf.int64, name=None), {'coredns': {'localhost:9153': {'coredns_dns_request_count_total': TensorSpec(shape=(), dtype=tf.float64, name=None)}}}) CoreDNS Time Series: 2020-03-03 22:35:17: 2.0 2020-03-03 22:35:18: 2.0 2020-03-03 22:35:19: 2.0 2020-03-03 22:35:20: 2.0 2020-03-03 22:35:21: 2.0

Vamos ver mais detalhes da especificação do dataset:

( TensorSpec(shape=(), dtype=tf.int64, name=None), { 'coredns': { 'localhost:9153': { 'coredns_dns_request_count_total': TensorSpec(shape=(), dtype=tf.float64, name=None) } } } )

É óbvio que o dataset consiste de uma tupla (time, values) (horário, valores), em que o campo values é um dicionário (dict) do Python, expandido para:

"job_name": { "instance_name": { "metric_name": value, }, }

No exemplo acima, 'coredns' é o nome do trabalho, 'localhost:9153' é o nome da instância, e 'coredns_dns_request_count_total' é o nome da métrica. Observe que, dependendo da consulta Prometheus usada, é possível que diversos trabalhos/instâncias/métricas sejam retornados. Também é por esse motivo que um dicionário (dict) do Python foi usado na estrutura do dataset.

Vejamos outra consulta "go_memstats_gc_sys_bytes" como exemplo. Como tanto o CoreDNS quanto o Prometheus são escritos em Golang, a métrica "go_memstats_gc_sys_bytes" está disponível tanto para o trabalho "coredns" quanto para o trabalho "prometheus":

Observação: pode ocorrer um erro para esta célula na primeira vez em que é executada. Execute novamente para que funcione.

dataset = tfio.experimental.IODataset.from_prometheus( "go_memstats_gc_sys_bytes", 5, endpoint="http://localhost:9090") print("Time Series CoreDNS/Prometheus Comparision:") for (time, value) in dataset: # time is milli second, convert to data time: time = datetime.fromtimestamp(time // 1000) print("{}: {}/{}".format( time, value['coredns']['localhost:9153']['go_memstats_gc_sys_bytes'], value['prometheus']['localhost:9090']['go_memstats_gc_sys_bytes']))
Time Series CoreDNS/Prometheus Comparision: 2020-03-03 22:35:17: 2385920.0/2775040.0 2020-03-03 22:35:18: 2385920.0/2775040.0 2020-03-03 22:35:19: 2385920.0/2775040.0 2020-03-03 22:35:20: 2385920.0/2775040.0 2020-03-03 22:35:21: 2385920.0/2775040.0

Agora, o Dataset criado está pronto para ser passado ao tf.keras diretamente para treinamento ou inferência.

Use o dataset para treinamento do modelo

Com o dataset de métricas criado, é possível passá-lo diretamente ao tf.keras para fazer treinamento e inferência do modelo.

Para fins de demonstração, este tutorial usará somente um modelo LSTM bem simples, com 1 característica e 2 passos como entrada:

n_steps, n_features = 2, 1 simple_lstm_model = tf.keras.models.Sequential([ tf.keras.layers.LSTM(8, input_shape=(n_steps, n_features)), tf.keras.layers.Dense(1) ]) simple_lstm_model.compile(optimizer='adam', loss='mae')

O dataset a ser usado é o valor 'go_memstats_sys_bytes' para o CoreDNS, com 10 amostras. Porém, como uma janela deslizante de window=n_steps e shift=1 são formados, são necessárias amostras adicionais (para quaisquer dois elementos consecutivos, o primeiro é recebido como x, e o segundo é recebido como y para o treinamento). O total é de 10 + n_steps - 1 + 1 = 12 segundos.

O valor dos dados também é redimensionado no intervalo [0, 1].

n_samples = 10 dataset = tfio.experimental.IODataset.from_prometheus( "go_memstats_sys_bytes", n_samples + n_steps - 1 + 1, endpoint="http://localhost:9090") # take go_memstats_gc_sys_bytes from coredns job dataset = dataset.map(lambda _, v: v['coredns']['localhost:9153']['go_memstats_sys_bytes']) # find the max value and scale the value to [0, 1] v_max = dataset.reduce(tf.constant(0.0, tf.float64), tf.math.maximum) dataset = dataset.map(lambda v: (v / v_max)) # expand the dimension by 1 to fit n_features=1 dataset = dataset.map(lambda v: tf.expand_dims(v, -1)) # take a sliding window dataset = dataset.window(n_steps, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda d: d.batch(n_steps)) # the first value is x and the next value is y, only take 10 samples x = dataset.take(n_samples) y = dataset.skip(1).take(n_samples) dataset = tf.data.Dataset.zip((x, y)) # pass the final dataset to model.fit for training simple_lstm_model.fit(dataset.batch(1).repeat(10), epochs=5, steps_per_epoch=10)
Train for 10 steps Epoch 1/5 10/10 [==============================] - 2s 150ms/step - loss: 0.8484 Epoch 2/5 10/10 [==============================] - 0s 10ms/step - loss: 0.7808 Epoch 3/5 10/10 [==============================] - 0s 10ms/step - loss: 0.7102 Epoch 4/5 10/10 [==============================] - 0s 11ms/step - loss: 0.6359 Epoch 5/5 10/10 [==============================] - 0s 11ms/step - loss: 0.5572
<tensorflow.python.keras.callbacks.History at 0x7f1758f3da90>

O modelo treinado acima não é muito útil, pois o servidor CoreDNS configurado neste tutorial não tem carga de trabalho nenhuma. Porém, esse é um pipeline funcional que pode ser usado para carregar métricas de servidores de produção reais. O modelo pode ser aprimorado para resolver problemas reais de automação de devops.