Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/pt-br/tutorials/quickstart/advanced.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Primeiros passos do TensorFlow 2 para especialistas

Este é um arquivo de notebook do Google Colaboratory. Os programas em Python são executados diretamente no navegador — uma ótima maneira de aprender e usar o TensorFlow. Para seguir este tutorial, execute o notebook no Google Colab clicando no botão no topo desta página.

  1. No Colab, conecte a um runtime do Python: no canto superior direito da barra de menu, selecione CONNECT (CONECTAR).

  2. Execute todas as células de código do notebook: selecione Runtime > Run all (Executar tudo).

Baixe e instale o TensorFlow 2. Importe o TensorFlow para seu programa:

Observação: atualize o pip para instalar o pacote do TensorFlow 2. Confira mais detalhes no guia de instalação.

Importe o TensorFlow para seu programa:

import tensorflow as tf print("TensorFlow version:", tf.__version__) from tensorflow.keras.layers import Dense, Flatten, Conv2D from tensorflow.keras import Model

Carregue e prepare o dataset MNIST.

mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Add a channels dimension x_train = x_train[..., tf.newaxis].astype("float32") x_test = x_test[..., tf.newaxis].astype("float32")

Use tf.data para dividir o dataset em lotes e misturá-lo:

train_ds = tf.data.Dataset.from_tensor_slices( (x_train, y_train)).shuffle(10000).batch(32) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

Crie o modelo tf.keras usando a API de subclasses do modelo:

class MyModel(Model): def __init__(self): super().__init__() self.conv1 = Conv2D(32, 3, activation='relu') self.flatten = Flatten() self.d1 = Dense(128, activation='relu') self.d2 = Dense(10) def call(self, x): x = self.conv1(x) x = self.flatten(x) x = self.d1(x) return self.d2(x) # Create an instance of the model model = MyModel()

Escolha um otimizador e a função de perda para o treinamento:

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam()

Selecione métricas para medir a perda e a exatidão do modelo. Essas métricas acumulam os valores das épocas e imprimem o resultado geral.

train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') test_loss = tf.keras.metrics.Mean(name='test_loss') test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

Use tf.GradientTape para treinar o modelo:

@tf.function def train_step(images, labels): with tf.GradientTape() as tape: # training=True is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = model(images, training=True) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions)

Teste o modelo:

@tf.function def test_step(images, labels): # training=False is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = model(images, training=False) t_loss = loss_object(labels, predictions) test_loss(t_loss) test_accuracy(labels, predictions)
EPOCHS = 5 for epoch in range(EPOCHS): # Reset the metrics at the start of the next epoch train_loss.reset_states() train_accuracy.reset_states() test_loss.reset_states() test_accuracy.reset_states() for images, labels in train_ds: train_step(images, labels) for test_images, test_labels in test_ds: test_step(test_images, test_labels) print( f'Epoch {epoch + 1}, ' f'Loss: {train_loss.result()}, ' f'Accuracy: {train_accuracy.result() * 100}, ' f'Test Loss: {test_loss.result()}, ' f'Test Accuracy: {test_accuracy.result() * 100}' )

O classificador de imagens já está treinado com cerca de 98% de exatidão nesse dataset. Para saber mais, leia os tutoriais do TensorFlow.