Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/addons/tutorials/image_ops.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

概述

此笔记本将演示如何使用 TensorFlow Addons 中的一些图像运算。

以下是本示例将涉及的图像运算列表:

  • tfa.image.mean_filter2d

  • tfa.image.rotate

  • tfa.image.transform

  • tfa.image.random_hsv_in_yiq

  • tfa.image.adjust_hsv_in_yiq

  • tfa.image.dense_image_warp

  • tfa.image.euclidean_dist_transform

设置

!pip install -U tensorflow-addons
import tensorflow as tf import numpy as np import tensorflow_addons as tfa import matplotlib.pyplot as plt

准备和检查图像

下载图像

img_path = tf.keras.utils.get_file('tensorflow.png','https://tensorflow.org/images/tf_logo.png')

检查图像

TensorFlow 图标

img_raw = tf.io.read_file(img_path) img = tf.io.decode_image(img_raw) img = tf.image.convert_image_dtype(img, tf.float32) img = tf.image.resize(img, [500,500]) plt.title("TensorFlow Logo with shape {}".format(img.shape)) _ = plt.imshow(img)

制作黑白版本

bw_img = 1.0 - tf.image.rgb_to_grayscale(img) plt.title("Mask image with shape {}".format(bw_img.shape)) _ = plt.imshow(bw_img[...,0], cmap='gray')

使用 tfa.image

均值滤波

均值滤波是一种滤波技术,通常用于去除图像或信号中的噪声。其理念是逐个像素遍历图像,然后用相邻像素的平均值替代该像素。

mean = tfa.image.mean_filter2d(img, filter_shape=11) _ = plt.imshow(mean)

旋转

此运算可将给定图像旋转用户输入的角度(以弧度为单位)。

rotate = tfa.image.rotate(img, tf.constant(np.pi/8)) _ = plt.imshow(rotate)

变换

此运算基于用户给定的变换向量来变换给定图像。

transform = tfa.image.transform(img, [1.0, 1.0, -250, 0.0, 1.0, 0.0, 0.0, 0.0]) _ = plt.imshow(transform)

YIQ 中的随机 HSV

此运算可将给定 RGB 图像的色标更改为 YIQ,但此处是从给定范围随机选择色度增量和饱和度值。

delta = 0.5 lower_saturation = 0.1 upper_saturation = 0.9 lower_value = 0.2 upper_value = 0.8 rand_hsvinyiq = tfa.image.random_hsv_in_yiq(img, delta, lower_saturation, upper_saturation, lower_value, upper_value) _ = plt.imshow(rand_hsvinyiq)

调整 YIQ 中的 HSV

此运算可将给定 RGB 图像的色标更改为 YIQ,但此处不是随机选择,而是由用户输入色度增量和饱和度值。

delta = 0.5 saturation = 0.3 value = 0.6 adj_hsvinyiq = tfa.image.adjust_hsv_in_yiq(img, delta, saturation, value) _ = plt.imshow(adj_hsvinyiq)

密集图像变形

此运算用于由偏移向量的流场指定的任何图像的非线性变形(例如,此处使用随机值)。

input_img = tf.image.convert_image_dtype(tf.expand_dims(img, 0), tf.dtypes.float32) flow_shape = [1, input_img.shape[1], input_img.shape[2], 2] init_flows = np.float32(np.random.normal(size=flow_shape) * 2.0) dense_img_warp = tfa.image.dense_image_warp(input_img, init_flows) dense_img_warp = tf.squeeze(dense_img_warp, 0) _ = plt.imshow(dense_img_warp)

欧氏距离变换

此运算可将像素值更新为从前景像素到背景像素的欧氏距离。

  • 注:它仅获取二进制图像并生成变换后的图像。如果指定不同的图像,将产生具有单一值的图像

gray = tf.image.convert_image_dtype(bw_img,tf.uint8) # The op expects a batch of images, so add a batch dimension gray = tf.expand_dims(gray, 0) eucid = tfa.image.euclidean_dist_transform(gray) eucid = tf.squeeze(eucid, (0, -1)) _ = plt.imshow(eucid, cmap='gray')