Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/guide/intro_to_modules.ipynb
25115 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

要进行 TensorFlow 机器学习,您可能需要定义、保存和恢复模型。

抽象地说,模型是:

  • 一个在张量上进行某些计算的函数(前向传递

  • 一些可以更新以响应训练的变量

在本指南中,您将深入学习 Keras,了解如何定义 TensorFlow 模型。本文着眼于 TensorFlow 如何收集变量和模型,以及如何保存和恢复它们。

注:如果您想立即开始使用 Keras,请参阅 Keras 指南集合

设置

import tensorflow as tf from datetime import datetime %load_ext tensorboard

TensorFlow 模块

大多数模型都由层组成。层是具有已知数学结构的函数,可以重复使用并具有可训练的变量。在 TensorFlow 中,层和模型的大多数高级实现(例如 Keras 或 Sonnet)都在以下同一个基础类上构建:tf.Module

构建模块

下面是一个在标量张量上运行的非常简单的 tf.Module 示例:

class SimpleModule(tf.Module): def __init__(self, name=None): super().__init__(name=name) self.a_variable = tf.Variable(5.0, name="train_me") self.non_trainable_variable = tf.Variable(5.0, trainable=False, name="do_not_train_me") def __call__(self, x): return self.a_variable * x + self.non_trainable_variable simple_module = SimpleModule(name="simple") simple_module(tf.constant(5.0))

模块和引申而来的层是“对象”的深度学习术语:它们具有内部状态以及使用该状态的方法。

__call__ 并无特殊之处,只是其行为与 Python 可调用对象类似;您可以使用任何函数来调用模型。

您可以出于任何原因开启和关闭变量的可训练性,包括在微调过程中冻结层和变量。

注:tf.Moduletf.keras.layers.Layertf.keras.Model 的基类,因此您在此处看到的一切内容也适用于 Keras。出于历史兼容性原因,Keras 层不会从模块收集变量,因此您的模型应仅使用模块或仅使用 Keras 层。不过,下面给出的用于检查变量的方法在这两种情况下相同。

通过将 tf.Module 子类化,将自动收集分配给该对象属性的任何 tf.Variabletf.Module 实例。这样,您可以保存和加载变量,还可以创建 tf.Module 的集合。

# All trainable variables print("trainable variables:", simple_module.trainable_variables) # Every variable print("all variables:", simple_module.variables)

下面是一个由模块组成的两层线性层模型的示例。

首先是一个密集(线性)层:

class Dense(tf.Module): def __init__(self, in_features, out_features, name=None): super().__init__(name=name) self.w = tf.Variable( tf.random.normal([in_features, out_features]), name='w') self.b = tf.Variable(tf.zeros([out_features]), name='b') def __call__(self, x): y = tf.matmul(x, self.w) + self.b return tf.nn.relu(y)

随后是完整的模型,此模型将创建并应用两个层实例:

class SequentialModule(tf.Module): def __init__(self, name=None): super().__init__(name=name) self.dense_1 = Dense(in_features=3, out_features=3) self.dense_2 = Dense(in_features=3, out_features=2) def __call__(self, x): x = self.dense_1(x) return self.dense_2(x) # You have made a model! my_model = SequentialModule(name="the_model") # Call it, with random results print("Model results:", my_model(tf.constant([[2.0, 2.0, 2.0]])))

tf.Module 实例将以递归方式自动收集分配给它的任何 tf.Variabletf.Module 实例。这样,您可以使用单个模型实例管理 tf.Module 的集合,并保存和加载整个模型。

print("Submodules:", my_model.submodules)
for var in my_model.variables: print(var, "\n")

等待创建变量

您在这里可能已经注意到,必须定义层的输入和输出大小。这样,w 变量才会具有已知的形状并且可被分配。

通过将变量创建推迟到第一次使用特定输入形状调用模块时,您将无需预先指定输入大小。

class FlexibleDenseModule(tf.Module): # Note: No need for `in_features` def __init__(self, out_features, name=None): super().__init__(name=name) self.is_built = False self.out_features = out_features def __call__(self, x): # Create variables on first call. if not self.is_built: self.w = tf.Variable( tf.random.normal([x.shape[-1], self.out_features]), name='w') self.b = tf.Variable(tf.zeros([self.out_features]), name='b') self.is_built = True y = tf.matmul(x, self.w) + self.b return tf.nn.relu(y)
# Used in a module class MySequentialModule(tf.Module): def __init__(self, name=None): super().__init__(name=name) self.dense_1 = FlexibleDenseModule(out_features=3) self.dense_2 = FlexibleDenseModule(out_features=2) def __call__(self, x): x = self.dense_1(x) return self.dense_2(x) my_model = MySequentialModule(name="the_model") print("Model results:", my_model(tf.constant([[2.0, 2.0, 2.0]])))

这种灵活性是 TensorFlow 层通常仅需要指定其输出的形状(例如在 tf.keras.layers.Dense 中),而无需指定输入和输出大小的原因。

保存权重

您可以将 tf.Module 保存为检查点SavedModel

检查点即是权重(即模块及其子模块内部的变量集的值)。

chkp_path = "my_checkpoint" checkpoint = tf.train.Checkpoint(model=my_model) checkpoint.write(chkp_path)

检查点由两种文件组成---数据本身以及元数据的索引文件。索引文件跟踪实际保存的内容和检查点的编号,而检查点数据包含变量值及其特性查找路径。

!ls my_checkpoint*

您可以查看检查点内部,以确保整个变量集合已由包含这些变量的 Python 对象保存并排序。

tf.train.list_variables(chkp_path)

在分布式(多机)训练期间,可以将它们分片,这就是要对它们进行编号(例如 '00000-of-00001')的原因。不过,在本例中,只有一个分片。

重新加载模型时,将重写 Python 对象中的值。

new_model = MySequentialModule() new_checkpoint = tf.train.Checkpoint(model=new_model) new_checkpoint.restore("my_checkpoint") # Should be the same result as above new_model(tf.constant([[2.0, 2.0, 2.0]]))

注:由于检查点处于长时间训练工作流的核心位置,因此 tf.checkpoint.CheckpointManager 是一个可使检查点管理变得更简单的辅助类。有关更多详细信息,请参阅指南

保存函数

TensorFlow 可以在不使用原始 Python 对象的情况下运行模型,如 TensorFlow ServingTensorFlow Lite 所示,甚至当您从 TensorFlow Hub 下载经过训练的模型时也是如此。

TensorFlow 需要了解如何执行 Python 中描述的计算,但不需要原始代码。为此,您可以创建一个计算图,如计算图和函数简介指南中所述。

此计算图中包含实现函数的运算

您可以通过添加 @tf.function 装饰器在上面的模型中定义计算图,以指示此代码应作为计算图运行。

class MySequentialModule(tf.Module): def __init__(self, name=None): super().__init__(name=name) self.dense_1 = Dense(in_features=3, out_features=3) self.dense_2 = Dense(in_features=3, out_features=2) @tf.function def __call__(self, x): x = self.dense_1(x) return self.dense_2(x) # You have made a model with a graph! my_model = MySequentialModule(name="the_model")

您构建的模块的工作原理与之前完全相同。传递给函数的每个唯一签名都会创建一个单独的计算图。请参阅计算图和函数简介指南以了解详情。

print(my_model([[2.0, 2.0, 2.0]])) print(my_model([[[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]]))

您可以通过在 TensorBoard 摘要中跟踪计算图来将其可视化。

# Set up logging. stamp = datetime.now().strftime("%Y%m%d-%H%M%S") logdir = "logs/func/%s" % stamp writer = tf.summary.create_file_writer(logdir) # Create a new model to get a fresh trace # Otherwise the summary will not see the graph. new_model = MySequentialModule() # Bracket the function call with # tf.summary.trace_on() and tf.summary.trace_export(). tf.summary.trace_on(graph=True) tf.profiler.experimental.start(logdir) # Call only one tf.function when tracing. z = print(new_model(tf.constant([[2.0, 2.0, 2.0]]))) with writer.as_default(): tf.summary.trace_export( name="my_func_trace", step=0, profiler_outdir=logdir)

启动 Tensorboard 以查看生成的跟踪:

#docs_infra: no_execute %tensorboard --logdir logs/func

A screenshot of the graph, in tensorboard

创建 SavedModel

共享经过完全训练的模型的推荐方式是使用 SavedModelSavedModel 包含函数集合与权重集合。

您可以按以下方式保存刚刚训练的模型:

tf.saved_model.save(my_model, "the_saved_model")
# Inspect the SavedModel in the directory !ls -l the_saved_model
# The variables/ directory contains a checkpoint of the variables !ls -l the_saved_model/variables

saved_model.pb 文件是一个描述函数式 tf.Graph协议缓冲区

可以从此表示加载模型和层,而无需实际构建创建该表示的类的实例。在您没有(或不需要)Python 解释器(例如大规模应用或在边缘设备上),或者在原始 Python 代码不可用或不实用的情况下,这样做十分理想。

您可以将模型作为新对象加载:

new_model = tf.saved_model.load("the_saved_model")

通过加载已保存模型创建的 new_model 是 TensorFlow 内部的用户对象,无需任何类知识。它不是 SequentialModule 类型的对象。

isinstance(new_model, SequentialModule)

此新模型​​适用于已定义的输入签名。您不能向以这种方式恢复的模型添加更多签名。

print(my_model([[2.0, 2.0, 2.0]])) print(my_model([[[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]]))

因此,利用 SavedModel,您可以使用 tf.Module 保存 TensorFlow 权重和计算图,随后再次加载它们。

Keras 模型和层

请注意,到目前为止,还没有提到 Keras。您可以在 tf.Module 上构建自己的高级 API,而我们已经拥有这些 API。

在本部分中,您将研究 Keras 如何使用 tf.Module。可在 Keras 指南中找到有关 Keras 模型的完整用户指南。

Keras 层和模型具有许多额外功能,包括:

  • 可选损失

  • 对指标的支持

  • 对可选 training 参数的内置支持,用于区分训练和推断用途

  • 保存和恢复 Python 对象而不仅仅是黑盒函数

  • get_configfrom_config 方法,允许您准确存储配置以在 Python 中克隆模型

这些功能通过子类化允许更复杂的模型,例如自定义 GAN 或变分自编码器 (VAE) 模型。在自定义层和模型的完整指南中阅读相关内容。

Keras 模型还附带额外的功能,使它们易于训练、评估、加载、保存,甚至在多台机器上进行训练。

Keras 层

tf.keras.layers.Layer 是所有 Keras 层的基类,它继承自 tf.Module

您只需换出父项,然后将 __call__ 更改为 call 即可将模块转换为 Keras 层:

class MyDense(tf.keras.layers.Layer): # Adding **kwargs to support base Keras layer arguments def __init__(self, in_features, out_features, **kwargs): super().__init__(**kwargs) # This will soon move to the build step; see below self.w = tf.Variable( tf.random.normal([in_features, out_features]), name='w') self.b = tf.Variable(tf.zeros([out_features]), name='b') def call(self, x): y = tf.matmul(x, self.w) + self.b return tf.nn.relu(y) simple_layer = MyDense(name="simple", in_features=3, out_features=3)

Keras 层有自己的 __call__,它会进行下一部分中所述的某些簿记,然后调用 call()。您应当不会看到功能上的任何变化。

simple_layer([[2.0, 2.0, 2.0]])

build 步骤

如上所述,在您确定输入形状之前,等待创建变量在许多情况下十分方便。

Keras 层具有额外的生命周期步骤,可让您在定义层时获得更高的灵活性。这是在 build() 函数中定义的。

build 仅被调用一次,而且是使用输入的形状调用的。它通常用于创建变量(权重)。

您可以根据输入的大小灵活地重写上面的 MyDense 层:

class FlexibleDense(tf.keras.layers.Layer): # Note the added `**kwargs`, as Keras supports many arguments def __init__(self, out_features, **kwargs): super().__init__(**kwargs) self.out_features = out_features def build(self, input_shape): # Create the state of the layer (weights) self.w = tf.Variable( tf.random.normal([input_shape[-1], self.out_features]), name='w') self.b = tf.Variable(tf.zeros([self.out_features]), name='b') def call(self, inputs): # Defines the computation from inputs to outputs return tf.matmul(inputs, self.w) + self.b # Create the instance of the layer flexible_dense = FlexibleDense(out_features=3)

此时,模型尚未构建,因此没有变量:

flexible_dense.variables

调用该函数会分配大小适当的变量。

# Call it, with predictably random results print("Model results:", flexible_dense(tf.constant([[2.0, 2.0, 2.0], [3.0, 3.0, 3.0]])))
flexible_dense.variables

由于仅调用一次 build,因此如果输入形状与层的变量不兼容,输入将被拒绝。

try: print("Model results:", flexible_dense(tf.constant([[2.0, 2.0, 2.0, 2.0]]))) except tf.errors.InvalidArgumentError as e: print("Failed:", e)

Keras 模型

您可以将模型定义为嵌套的 Keras 层。

不过,Keras 还提供了称为 tf.keras.Model 的全功能模型类。它继承自 tf.keras.layers.Layer,因此 Keras 模型支持以与 Keras 层相同的方式使用和嵌套。Keras 模型还具有额外的功能,这使它们可以轻松训练、评估、加载、保存,甚至在多台机器上进行训练。

您可以使用几乎相同的代码定义上面的 SequentialModule,再次将 __call__ 转换为 call() 并更改父项。

class MySequentialModel(tf.keras.Model): def __init__(self, name=None, **kwargs): super().__init__(**kwargs) self.dense_1 = FlexibleDense(out_features=3) self.dense_2 = FlexibleDense(out_features=2) def call(self, x): x = self.dense_1(x) return self.dense_2(x) # You have made a Keras model! my_sequential_model = MySequentialModel(name="the_model") # Call it on a tensor, with random results print("Model results:", my_sequential_model(tf.constant([[2.0, 2.0, 2.0]])))

所有相同的功能都可用,包括跟踪变量和子模块。

注:嵌套在 Keras 层或模型中的原始 tf.Module 将不会收集其变量以用于训练或保存。相反,它会在 Keras 层内嵌套 Keras 层。

my_sequential_model.variables
my_sequential_model.submodules

重写 tf.keras.Model 是一种构建 TensorFlow 模型的极 Python 化方式。如果要从其他框架迁移模型,这可能非常简单。

如果要构造的模型是现有层和输入的简单组合,则可以使用函数式 API 节省时间和空间,此 API 附带有关模型重构和架构的附加功能。

下面是使用函数式 API 构造的相同模型:

inputs = tf.keras.Input(shape=[3,]) x = FlexibleDense(3)(inputs) x = FlexibleDense(2)(x) my_functional_model = tf.keras.Model(inputs=inputs, outputs=x) my_functional_model.summary()
my_functional_model(tf.constant([[2.0, 2.0, 2.0]]))

这里的主要区别在于,输入形状是作为函数构造过程的一部分预先指定的。在这种情况下,不必完全指定 input_shape 参数;您可以将某些维度保留为 None

注:您无需在子类化模型中指定 input_shapeInputLayer;这些参数和层将被忽略。

保存 Keras 模型

Keras 模型拥有自己专门的 zip 归档保存格式,以 .keras 扩展名标记。调用 tf.keras.Model.save 时,在文件名中添加一个 .keras 扩展名。例如:

my_sequential_model.save("exname_of_file.keras")

同样地,它们也可以轻松重新加载:

reconstructed_model = tf.keras.models.load_model("exname_of_file.keras")

Keras zip 归档 .keras 文件还可以保存指标、损失和优化器状态。

可以使用此重构模型,并且在相同数据上调用时会产生相同的结果:

reconstructed_model(tf.constant([[2.0, 2.0, 2.0]]))

设置 Keras 模型检查点

也可以为 Keras 模型设置检查点,这看起来和 tf.Module 一样。

有关保存和序列化 Keras 模型,包括为自定义层提供配置方法来为功能提供支持的更多信息,请参阅保存和序列化指南

后续步骤

如果您想了解有关 Keras 的更多详细信息,可以在此处查看现有的 Keras 指南。

tf.module 上构建的高级 API 的另一个示例是 DeepMind 的 Sonnet,其网站上有详细介绍。