Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/guide/migrate/sessionrunhook_callback.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

在 TensorFlow 1 中,要自定义训练的行为,可以使用 tf.estimator.SessionRunHooktf.estimator.Estimator。本指南演示了如何使用 tf.keras.callbacks.Callback API 从 SessionRunHook 迁移到 TensorFlow 2 的自定义回调,此 API 与 Keras Model.fit 一起用于训练(以及 Model.evaluateModel.predict)。您将通过实现 SessionRunHookCallback 任务来学习如何做到这一点,此任务会在训练期间测量每秒的样本数。

回调的示例为检查点保存 (tf.keras.callbacks.ModelCheckpoint) 和 TensorBoard 摘要编写。Keras 回调是在内置 Keras Model.fit/Model.evaluate/Model.predict API 中的训练/评估/预测期间的不同点调用的对象。可以在 tf.keras.callbacks.Callback API 文档以及编写自己的回调使用内置方法进行训练和评估使用回调部分)指南中详细了解回调。

安装

从导入和用于演示目的的简单数据集开始:

import tensorflow as tf import tensorflow.compat.v1 as tf1 import time from datetime import datetime from absl import flags
features = [[1., 1.5], [2., 2.5], [3., 3.5]] labels = [[0.3], [0.5], [0.7]] eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]] eval_labels = [[0.8], [0.9], [1.]]

TensorFlow 1:使用 tf.estimator API 创建自定义 SessionRunHook

下面的 TensorFlow 1 示例展示了如何设置自定义 SessionRunHook 以在训练期间测量每秒的样本数。创建钩子 (LoggerHook) 后,将其传递给 tf.estimator.Estimator.trainhooks 参数。

def _input_fn(): return tf1.data.Dataset.from_tensor_slices( (features, labels)).batch(1).repeat(100) def _model_fn(features, labels, mode): logits = tf1.layers.Dense(1)(features) loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits) optimizer = tf1.train.AdagradOptimizer(0.05) train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step()) return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
class LoggerHook(tf1.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() self.log_frequency = 10 def before_run(self, run_context): self._step += 1 def after_run(self, run_context, run_values): if self._step % self.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time examples_per_sec = self.log_frequency / duration print('Time:', datetime.now(), ', Step #:', self._step, ', Examples per second:', examples_per_sec) estimator = tf1.estimator.Estimator(model_fn=_model_fn) # Begin training. estimator.train(_input_fn, hooks=[LoggerHook()])

TensorFlow 2:为 Model.fit 创建自定义 Keras 回调

在 TensorFlow 2 中,当您使用内置 Keras Model.fit(或 Model.evaluate)进行训练/评估时,可以配置自定义 tf.keras.callbacks.Callback,然后将其传递给 Model.fit(或 Model.evaluate)的 callbacks 参数。(在编写自己的回调指南中了解详情。)

在下面的示例中,您将编写一个自定义 tf.keras.callbacks.Callback 来记录各种指标 – 它将测量每秒的样本数,这应该与前面的 SessionRunHook 示例中的指标相当。

class CustomCallback(tf.keras.callbacks.Callback): def on_train_begin(self, logs = None): self._step = -1 self._start_time = time.time() self.log_frequency = 10 def on_train_batch_begin(self, batch, logs = None): self._step += 1 def on_train_batch_end(self, batch, logs = None): if self._step % self.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time examples_per_sec = self.log_frequency / duration print('Time:', datetime.now(), ', Step #:', self._step, ', Examples per second:', examples_per_sec) callback = CustomCallback() dataset = tf.data.Dataset.from_tensor_slices( (features, labels)).batch(1).repeat(100) model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)]) optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05) model.compile(optimizer, "mse") # Begin training. result = model.fit(dataset, callbacks=[callback], verbose = 0) # Provide the results of training metrics. result.history

后续步骤

通过下列方式详细了解回调:

此外,您可能还会发现下列与迁移相关的资源十分有用: