Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/lite/convert/api_updates.md
25118 views

API 更新

本页面提供了在 TensorFlow 2.x 中对 tf.lite.TFLiteConverter Python API 进行的更新的信息。

注:如果您对任何更改有疑问,请提交 GitHub 议题

  • TensorFlow 2.3

    • 对于使用新的 inference_input_typeinference_output_type 特性的整数量化模型,支持整数(之前仅支持浮点数)输入/输出类型。请参阅此示例用法

    • 支持使用动态维度转换和调整模型大小。

    • 添加了具有 16 位激活和 8 位权重的新实验性量化模式。

  • TensorFlow 2.2

    • 默认情况下,利用基于 MLIR 的转换(Google 最前沿的机器学习编译技术)。它可以转换新模型类,包括 Mask R-CNN、MobileBERT 等,同时也支持使用函数式控制流的模型。

  • TensorFlow 2.0 与 TensorFlow 1.x

    • target_ops 特性重命名为 target_spec.supported_ops

    • 移除了以下特性:

      • 量化inference_typequantized_input_statspost_training_quantizedefault_ranges_statsreorder_across_fake_quantchange_concat_input_rangesget_input_arrays()。现在,通过 tf.keras API 为量化感知训练提供支持,并且训练后量化使用更少的特性。

      • 可视化output_formatdump_graphviz_dirdump_graphviz_video。现在,可视化 TensorFlow Lite 模型的推荐方式是使用 visualize.py

      • 冻结计算图drop_control_dependency,因为 TensorFlow 2.x 不支持冻结计算图。

    • 移除了其他转换器 API,如 tf.lite.toco_converttf.lite.TocoConverter

    • 移除了其他相关 API,如 tf.lite.OpHinttf.lite.constants(为了减少重复,tf.lite.constants.* 类型已映射到 tf.* TensorFlow 数据类型)