Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/model_optimization/guide/clustering/clustering_example.ipynb
25118 views
Kernel: Python 3

Copyright 2020 The TensorFlow Authors.

#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

Keras 中的权重聚类示例

概述

欢迎阅读 TensorFlow Model Optimization Toolkit 中权重聚类的端到端示例。

其他页面

有关权重聚类的定义以及如何确定是否应使用权重聚类(包括支持的功能)的介绍,请参阅概述页面。

要快速找到您的用例(不局限于使用 16 个簇完全聚类模型)所需的 API,请参阅综合指南

目录

在本教程中,您将:

  1. 从头开始为 MNIST 数据集训练一个 tf.keras 模型。

  2. 通过应用权重聚类 API 对模型进行微调,并查看准确率。

  3. 通过聚类创建一个大小缩减至六分之一的 TF 和 TFLite 模型。

  4. 通过将权重聚类与训练后量化相结合,创建一个大小缩减至八分之一的 TFLite 模型。

  5. 查看从 TF 到 TFLite 的准确率持久性。

设置

您可以在本地 virtualenvColab 中运行此 Jupyter 笔记本。有关设置依赖项的详细信息,请参阅安装指南

! pip install -q tensorflow-model-optimization
import tensorflow as tf from tensorflow import keras import numpy as np import tempfile import zipfile import os

在不使用聚类的情况下为 MNIST 训练 tf.keras 模型

# Load MNIST dataset mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # Normalize the input image so that each pixel value is between 0 to 1. train_images = train_images / 255.0 test_images = test_images / 255.0 # Define the model architecture. model = keras.Sequential([ keras.layers.InputLayer(input_shape=(28, 28)), keras.layers.Reshape(target_shape=(28, 28, 1)), keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(10) ]) # Train the digit classification model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit( train_images, train_labels, validation_split=0.1, epochs=10 )

评估基准模型并保存以备稍后使用

_, baseline_model_accuracy = model.evaluate( test_images, test_labels, verbose=0) print('Baseline test accuracy:', baseline_model_accuracy) _, keras_file = tempfile.mkstemp('.h5') print('Saving model to: ', keras_file) tf.keras.models.save_model(model, keras_file, include_optimizer=False)

通过聚类微调预训练模型

cluster_weights() API 应用于整个预训练模型,以演示它不仅能够在应用 zip 后有效缩减模型大小,还能保持良好的准确率。有关如何以最佳方式平衡用例的准确率和压缩率,请参阅综合指南中的每层示例。

定义模型并应用聚类 API

在将模型传递给聚类 API 之前,请确保它已经过训练并表现出可接受的准确率。

import tensorflow_model_optimization as tfmot cluster_weights = tfmot.clustering.keras.cluster_weights CentroidInitialization = tfmot.clustering.keras.CentroidInitialization clustering_params = { 'number_of_clusters': 16, 'cluster_centroids_init': CentroidInitialization.LINEAR } # Cluster a whole model clustered_model = cluster_weights(model, **clustering_params) # Use smaller learning rate for fine-tuning clustered model opt = tf.keras.optimizers.Adam(learning_rate=1e-5) clustered_model.compile( loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=opt, metrics=['accuracy']) clustered_model.summary()

微调模型并根据基准评估准确率

使用聚类对模型进行 1 个周期的微调。

# Fine-tune model clustered_model.fit( train_images, train_labels, batch_size=500, epochs=1, validation_split=0.1)

对于本示例,与基准相比,聚类后的测试准确率损失最小。

_, clustered_model_accuracy = clustered_model.evaluate( test_images, test_labels, verbose=0) print('Baseline test accuracy:', baseline_model_accuracy) print('Clustered test accuracy:', clustered_model_accuracy)

通过聚类创建大小缩减至六分之一的模型

strip_clustering 和应用标准压缩算法(例如通过 gzip)对于看到聚类压缩的好处必不可少。

首先,为 TensorFlow 创建一个可压缩模型。在这里,strip_clustering 会移除聚类仅在训练期间才需要的所有变量(例如用于存储簇形心和索引的 tf.Variable),否则这些变量会在推理期间增加模型大小。

final_model = tfmot.clustering.keras.strip_clustering(clustered_model) _, clustered_keras_file = tempfile.mkstemp('.h5') print('Saving clustered model to: ', clustered_keras_file) tf.keras.models.save_model(final_model, clustered_keras_file, include_optimizer=False)

随后,为 TFLite 创建可压缩模型。您可以将聚类模型转换为可在目标后端上运行的格式。TensorFlow Lite 是可用于部署到移动设备的示例。

clustered_tflite_file = '/tmp/clustered_mnist.tflite' converter = tf.lite.TFLiteConverter.from_keras_model(final_model) tflite_clustered_model = converter.convert() with open(clustered_tflite_file, 'wb') as f: f.write(tflite_clustered_model) print('Saved clustered TFLite model to:', clustered_tflite_file)

定义一个辅助函数,通过 gzip 实际压缩模型并测量压缩后的大小。

def get_gzipped_model_size(file): # It returns the size of the gzipped model in bytes. import os import zipfile _, zipped_file = tempfile.mkstemp('.zip') with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f: f.write(file) return os.path.getsize(zipped_file)

比较后可以发现,聚类使模型大小缩减至原来的六分之一

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file))) print("Size of gzipped clustered Keras model: %.2f bytes" % (get_gzipped_model_size(clustered_keras_file))) print("Size of gzipped clustered TFlite model: %.2f bytes" % (get_gzipped_model_size(clustered_tflite_file)))

通过将权重聚类与训练后量化相结合,创建一个大小缩减至八分之一的 TFLite 模型

您可以将训练后量化应用于聚类模型来获得更多好处。

converter = tf.lite.TFLiteConverter.from_keras_model(final_model) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_quant_model = converter.convert() _, quantized_and_clustered_tflite_file = tempfile.mkstemp('.tflite') with open(quantized_and_clustered_tflite_file, 'wb') as f: f.write(tflite_quant_model) print('Saved quantized and clustered TFLite model to:', quantized_and_clustered_tflite_file) print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file))) print("Size of gzipped clustered and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_clustered_tflite_file)))

查看从 TF 到 TFLite 的准确率持久性

定义一个辅助函数,基于测试数据集评估 TFLite 模型。

def eval_model(interpreter): input_index = interpreter.get_input_details()[0]["index"] output_index = interpreter.get_output_details()[0]["index"] # Run predictions on every image in the "test" dataset. prediction_digits = [] for i, test_image in enumerate(test_images): if i % 1000 == 0: print('Evaluated on {n} results so far.'.format(n=i)) # Pre-processing: add batch dimension and convert to float32 to match with # the model's input data format. test_image = np.expand_dims(test_image, axis=0).astype(np.float32) interpreter.set_tensor(input_index, test_image) # Run inference. interpreter.invoke() # Post-processing: remove batch dimension and find the digit with highest # probability. output = interpreter.tensor(output_index) digit = np.argmax(output()[0]) prediction_digits.append(digit) print('\n') # Compare prediction results with ground truth labels to calculate accuracy. prediction_digits = np.array(prediction_digits) accuracy = (prediction_digits == test_labels).mean() return accuracy

评估已被聚类和量化的模型后,您将看到从 TensorFlow 持续到 TFLite 后端的准确率。

interpreter = tf.lite.Interpreter(model_content=tflite_quant_model) interpreter.allocate_tensors() test_accuracy = eval_model(interpreter) print('Clustered and quantized TFLite test_accuracy:', test_accuracy) print('Clustered TF test accuracy:', clustered_model_accuracy)

结论

在本教程中,您了解了如何使用 TensorFlow Model Optimization Toolkit API 创建聚类模型。更具体地说,您已经从头至尾完成了一个端到端示例,此示例为 MNIST 创建了一个大小缩减至原来的八分之一且准确率差异最小的模型。我们鼓励您试用这项新功能,这对于在资源受限的环境中进行部署特别重要。