Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/tensorboard/text_summaries.ipynb
25115 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

概述

使用 TensorFlow Text Summary API,您可以轻松地在 TensorBoard 中记录任意文本并进行查看。这在采样和检查输入数据,或在记录执行元数据或生成的文本方面非常实用。您还可以记录文本形式的诊断数据,这在模型开发过程中可能会有所帮助。

在本教程中,您将尝试 Text Summary API 的一些基本用例。

设置

try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass # Load the TensorBoard notebook extension. %load_ext tensorboard
import tensorflow as tf from datetime import datetime import json from packaging import version import tempfile print("TensorFlow version: ", tf.__version__) assert version.parse(tf.__version__).release[0] >= 2, \ "This notebook requires TensorFlow 2.0 or above."
TensorFlow version: 2.5.0-dev20210219

记录一段文本

为了解 Text Summary API 的工作原理,现在您将在 TensorBoard 中简单记录一小段文本并查看其显示方式。

my_text = "Hello world! 😃"
# Clear out any prior log data. !rm -rf logs # Sets up a timestamped log directory. logdir = "logs/text_basics/" + datetime.now().strftime("%Y%m%d-%H%M%S") # Creates a file writer for the log directory. file_writer = tf.summary.create_file_writer(logdir) # Using the file writer, log the text. with file_writer.as_default(): tf.summary.text("first_text", my_text, step=0)

现在,使用 TensorBoard 检查文本。等待几秒,直至界面出现。

%tensorboard --logdir logs

组织多个文本流

如果有多个文本流,可以将它们保存在单独的名称空间中,从而便于对其进行组织,就像标量或其他数据一样。

请注意,如果您在多个步骤中记录文本,TensorBoard 将对要显示的步骤进行二次采样,以便演示内容易于管理。您可以使用 --samples_per_plugin 标志控制采样率。

# Sets up a second directory to not overwrite the first one. logdir = "logs/multiple_texts/" + datetime.now().strftime("%Y%m%d-%H%M%S") # Creates a file writer for the log directory. file_writer = tf.summary.create_file_writer(logdir) # Using the file writer, log the text. with file_writer.as_default(): with tf.name_scope("name_scope_1"): for step in range(20): tf.summary.text("a_stream_of_text", f"Hello from step {step}", step=step) tf.summary.text("another_stream_of_text", f"This can be kept separate {step}", step=step) with tf.name_scope("name_scope_2"): tf.summary.text("just_from_step_0", "This is an important announcement from step 0", step=0)
%tensorboard --logdir logs/multiple_texts --samples_per_plugin 'text=5'

Markdown 解释

TensorBoard 将文本摘要解释为 Markdown,因为多种格式可以使您记录的数据更易于阅读和理解,如下所示。(如果您不需要 Markdown 解释,请参见本议题,了解抑制解释的解决方法。)

# Sets up a third timestamped log directory under "logs" logdir = "logs/markdown/" + datetime.now().strftime("%Y%m%d-%H%M%S") # Creates a file writer for the log directory. file_writer = tf.summary.create_file_writer(logdir) some_obj_worth_noting = { "tfds_training_data": { "name": "mnist", "split": "train", "shuffle_files": "True", }, "keras_optimizer": { "name": "Adagrad", "learning_rate": "0.001", "epsilon": 1e-07, }, "hardware": "Cloud TPU", } # TODO: Update this example when TensorBoard is released with # https://github.com/tensorflow/tensorboard/pull/4585 # which supports fenced codeblocks in Markdown. def pretty_json(hp): json_hp = json.dumps(hp, indent=2) return "".join("\t" + line for line in json_hp.splitlines(True)) markdown_text = """ ### Markdown Text TensorBoard supports basic markdown syntax, including: preformatted code **bold text** | and | tables | | ---- | ---------- | | among | others | """ with file_writer.as_default(): tf.summary.text("run_params", pretty_json(some_obj_worth_noting), step=0) tf.summary.text("markdown_jubiliee", markdown_text, step=0)
%tensorboard --logdir logs/markdown