Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/tutorials/load_data/numpy.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

使用 tf.data 加载 NumPy 数据

本教程提供了一个将数据从 NumPy 数组加载到 tf.data.Dataset 中的示例。

此示例从 .npz 文件加载 MNIST 数据集。但是,NumPy 数组的来源并不重要。

安装

import numpy as np import tensorflow as tf

.npz 文件中加载

DATA_URL = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz' path = tf.keras.utils.get_file('mnist.npz', DATA_URL) with np.load(path) as data: train_examples = data['x_train'] train_labels = data['y_train'] test_examples = data['x_test'] test_labels = data['y_test']

使用 tf.data.Dataset 加载 NumPy 数组

假设您有一个示例数组和相应的标签数组,请将两个数组作为元组传递给 tf.data.Dataset.from_tensor_slices 以创建 tf.data.Dataset

train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels)) test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))

使用该数据集

打乱和批次化数据集

BATCH_SIZE = 64 SHUFFLE_BUFFER_SIZE = 100 train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE) test_dataset = test_dataset.batch(BATCH_SIZE)

建立和训练模型

model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['sparse_categorical_accuracy'])
model.fit(train_dataset, epochs=10)
model.evaluate(test_dataset)