Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
tensorflow
GitHub Repository: tensorflow/docs-l10n
Path: blob/master/site/zh-cn/tutorials/quickstart/advanced.ipynb
25118 views
Kernel: Python 3
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.

专家的 TensorFlow 2 快速入门

这是一个 Google Colaboratory 笔记本。Python 程序可以直接在浏览器中运行,这是学习和使用 Tensorflow 的绝佳方式。要按照本教程操作,请点击此页面顶部的按钮,在 Google Colab 中运行笔记本。

  1. 在 Colab 中,连接到 Python 运行时:在菜单栏的右上方,选择 CONNECT

  2. 运行所有笔记本代码单元:选择 Runtime > Run all

下载并安装 TensorFlow 2。将 TensorFlow 导入您的程序:

注:升级 pip 以安装 TensorFlow 2 软件包。请参阅安装指南了解详细信息。

将 TensorFlow 导入到您的程序:

import tensorflow as tf print("TensorFlow version:", tf.__version__) from tensorflow.keras.layers import Dense, Flatten, Conv2D from tensorflow.keras import Model

加载并准备 MNIST 数据集

mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Add a channels dimension x_train = x_train[..., tf.newaxis].astype("float32") x_test = x_test[..., tf.newaxis].astype("float32")

使用 tf.data 将数据集分批和重排:

train_ds = tf.data.Dataset.from_tensor_slices( (x_train, y_train)).shuffle(10000).batch(32) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

使用 Keras 模型子类化 API 构建 tf.keras 模型:

class MyModel(Model): def __init__(self): super().__init__() self.conv1 = Conv2D(32, 3, activation='relu') self.flatten = Flatten() self.d1 = Dense(128, activation='relu') self.d2 = Dense(10) def call(self, x): x = self.conv1(x) x = self.flatten(x) x = self.d1(x) return self.d2(x) # Create an instance of the model model = MyModel()

选择用于训练的优化器和损失函数:

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam()

选择指标来衡量模型的损失和准确率。这些指标在周期内累积值,然后打印总体结果。

train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') test_loss = tf.keras.metrics.Mean(name='test_loss') test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

使用 tf.GradientTape训练模型:

@tf.function def train_step(images, labels): with tf.GradientTape() as tape: # training=True is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = model(images, training=True) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions)

测试模型:

@tf.function def test_step(images, labels): # training=False is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = model(images, training=False) t_loss = loss_object(labels, predictions) test_loss(t_loss) test_accuracy(labels, predictions)
EPOCHS = 5 for epoch in range(EPOCHS): # Reset the metrics at the start of the next epoch train_loss.reset_states() train_accuracy.reset_states() test_loss.reset_states() test_accuracy.reset_states() for images, labels in train_ds: train_step(images, labels) for test_images, test_labels in test_ds: test_step(test_images, test_labels) print( f'Epoch {epoch + 1}, ' f'Loss: {train_loss.result()}, ' f'Accuracy: {train_accuracy.result() * 100}, ' f'Test Loss: {test_loss.result()}, ' f'Test Accuracy: {test_accuracy.result() * 100}' )

现在,经过训练,照片分类器在此数据集上的准确率约为 98%。要了解详情,请阅读 TensorFlow 教程