Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/alpha/kernel/perf_event.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Hardware performance events for the Alpha.
4
*
5
* We implement HW counts on the EV67 and subsequent CPUs only.
6
*
7
* (C) 2010 Michael J. Cree
8
*
9
* Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
10
* ARM code, which are copyright by their respective authors.
11
*/
12
13
#include <linux/perf_event.h>
14
#include <linux/kprobes.h>
15
#include <linux/kernel.h>
16
#include <linux/kdebug.h>
17
#include <linux/mutex.h>
18
#include <linux/init.h>
19
20
#include <asm/hwrpb.h>
21
#include <linux/atomic.h>
22
#include <asm/irq.h>
23
#include <asm/irq_regs.h>
24
#include <asm/pal.h>
25
#include <asm/wrperfmon.h>
26
#include <asm/hw_irq.h>
27
28
29
/* The maximum number of PMCs on any Alpha CPU whatsoever. */
30
#define MAX_HWEVENTS 3
31
#define PMC_NO_INDEX -1
32
33
/* For tracking PMCs and the hw events they monitor on each CPU. */
34
struct cpu_hw_events {
35
int enabled;
36
/* Number of events scheduled; also number entries valid in arrays below. */
37
int n_events;
38
/* Number events added since last hw_perf_disable(). */
39
int n_added;
40
/* Events currently scheduled. */
41
struct perf_event *event[MAX_HWEVENTS];
42
/* Event type of each scheduled event. */
43
unsigned long evtype[MAX_HWEVENTS];
44
/* Current index of each scheduled event; if not yet determined
45
* contains PMC_NO_INDEX.
46
*/
47
int current_idx[MAX_HWEVENTS];
48
/* The active PMCs' config for easy use with wrperfmon(). */
49
unsigned long config;
50
/* The active counters' indices for easy use with wrperfmon(). */
51
unsigned long idx_mask;
52
};
53
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
54
55
56
57
/*
58
* A structure to hold the description of the PMCs available on a particular
59
* type of Alpha CPU.
60
*/
61
struct alpha_pmu_t {
62
/* Mapping of the perf system hw event types to indigenous event types */
63
const int *event_map;
64
/* The number of entries in the event_map */
65
int max_events;
66
/* The number of PMCs on this Alpha */
67
int num_pmcs;
68
/*
69
* All PMC counters reside in the IBOX register PCTR. This is the
70
* LSB of the counter.
71
*/
72
int pmc_count_shift[MAX_HWEVENTS];
73
/*
74
* The mask that isolates the PMC bits when the LSB of the counter
75
* is shifted to bit 0.
76
*/
77
unsigned long pmc_count_mask[MAX_HWEVENTS];
78
/* The maximum period the PMC can count. */
79
unsigned long pmc_max_period[MAX_HWEVENTS];
80
/*
81
* The maximum value that may be written to the counter due to
82
* hardware restrictions is pmc_max_period - pmc_left.
83
*/
84
long pmc_left[3];
85
/* Subroutine for allocation of PMCs. Enforces constraints. */
86
int (*check_constraints)(struct perf_event **, unsigned long *, int);
87
/* Subroutine for checking validity of a raw event for this PMU. */
88
int (*raw_event_valid)(u64 config);
89
};
90
91
/*
92
* The Alpha CPU PMU description currently in operation. This is set during
93
* the boot process to the specific CPU of the machine.
94
*/
95
static const struct alpha_pmu_t *alpha_pmu;
96
97
98
#define HW_OP_UNSUPPORTED -1
99
100
/*
101
* The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
102
* follow. Since they are identical we refer to them collectively as the
103
* EV67 henceforth.
104
*/
105
106
/*
107
* EV67 PMC event types
108
*
109
* There is no one-to-one mapping of the possible hw event types to the
110
* actual codes that are used to program the PMCs hence we introduce our
111
* own hw event type identifiers.
112
*/
113
enum ev67_pmc_event_type {
114
EV67_CYCLES = 1,
115
EV67_INSTRUCTIONS,
116
EV67_BCACHEMISS,
117
EV67_MBOXREPLAY,
118
EV67_LAST_ET
119
};
120
#define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
121
122
123
/* Mapping of the hw event types to the perf tool interface */
124
static const int ev67_perfmon_event_map[] = {
125
[PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES,
126
[PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS,
127
[PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
128
[PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS,
129
};
130
131
struct ev67_mapping_t {
132
int config;
133
int idx;
134
};
135
136
/*
137
* The mapping used for one event only - these must be in same order as enum
138
* ev67_pmc_event_type definition.
139
*/
140
static const struct ev67_mapping_t ev67_mapping[] = {
141
{EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */
142
{EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */
143
{EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
144
{EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */
145
};
146
147
148
/*
149
* Check that a group of events can be simultaneously scheduled on to the
150
* EV67 PMU. Also allocate counter indices and config.
151
*/
152
static int ev67_check_constraints(struct perf_event **event,
153
unsigned long *evtype, int n_ev)
154
{
155
int idx0;
156
unsigned long config;
157
158
idx0 = ev67_mapping[evtype[0]-1].idx;
159
config = ev67_mapping[evtype[0]-1].config;
160
if (n_ev == 1)
161
goto success;
162
163
BUG_ON(n_ev != 2);
164
165
if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
166
/* MBOX replay traps must be on PMC 1 */
167
idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
168
/* Only cycles can accompany MBOX replay traps */
169
if (evtype[idx0] == EV67_CYCLES) {
170
config = EV67_PCTR_CYCLES_MBOX;
171
goto success;
172
}
173
}
174
175
if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
176
/* Bcache misses must be on PMC 1 */
177
idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
178
/* Only instructions can accompany Bcache misses */
179
if (evtype[idx0] == EV67_INSTRUCTIONS) {
180
config = EV67_PCTR_INSTR_BCACHEMISS;
181
goto success;
182
}
183
}
184
185
if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
186
/* Instructions must be on PMC 0 */
187
idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
188
/* By this point only cycles can accompany instructions */
189
if (evtype[idx0^1] == EV67_CYCLES) {
190
config = EV67_PCTR_INSTR_CYCLES;
191
goto success;
192
}
193
}
194
195
/* Otherwise, darn it, there is a conflict. */
196
return -1;
197
198
success:
199
event[0]->hw.idx = idx0;
200
event[0]->hw.config_base = config;
201
if (n_ev == 2) {
202
event[1]->hw.idx = idx0 ^ 1;
203
event[1]->hw.config_base = config;
204
}
205
return 0;
206
}
207
208
209
static int ev67_raw_event_valid(u64 config)
210
{
211
return config >= EV67_CYCLES && config < EV67_LAST_ET;
212
};
213
214
215
static const struct alpha_pmu_t ev67_pmu = {
216
.event_map = ev67_perfmon_event_map,
217
.max_events = ARRAY_SIZE(ev67_perfmon_event_map),
218
.num_pmcs = 2,
219
.pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
220
.pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0},
221
.pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
222
.pmc_left = {16, 4, 0},
223
.check_constraints = ev67_check_constraints,
224
.raw_event_valid = ev67_raw_event_valid,
225
};
226
227
228
229
/*
230
* Helper routines to ensure that we read/write only the correct PMC bits
231
* when calling the wrperfmon PALcall.
232
*/
233
static inline void alpha_write_pmc(int idx, unsigned long val)
234
{
235
val &= alpha_pmu->pmc_count_mask[idx];
236
val <<= alpha_pmu->pmc_count_shift[idx];
237
val |= (1<<idx);
238
wrperfmon(PERFMON_CMD_WRITE, val);
239
}
240
241
static inline unsigned long alpha_read_pmc(int idx)
242
{
243
unsigned long val;
244
245
val = wrperfmon(PERFMON_CMD_READ, 0);
246
val >>= alpha_pmu->pmc_count_shift[idx];
247
val &= alpha_pmu->pmc_count_mask[idx];
248
return val;
249
}
250
251
/* Set a new period to sample over */
252
static int alpha_perf_event_set_period(struct perf_event *event,
253
struct hw_perf_event *hwc, int idx)
254
{
255
long left = local64_read(&hwc->period_left);
256
long period = hwc->sample_period;
257
int ret = 0;
258
259
if (unlikely(left <= -period)) {
260
left = period;
261
local64_set(&hwc->period_left, left);
262
hwc->last_period = period;
263
ret = 1;
264
}
265
266
if (unlikely(left <= 0)) {
267
left += period;
268
local64_set(&hwc->period_left, left);
269
hwc->last_period = period;
270
ret = 1;
271
}
272
273
/*
274
* Hardware restrictions require that the counters must not be
275
* written with values that are too close to the maximum period.
276
*/
277
if (unlikely(left < alpha_pmu->pmc_left[idx]))
278
left = alpha_pmu->pmc_left[idx];
279
280
if (left > (long)alpha_pmu->pmc_max_period[idx])
281
left = alpha_pmu->pmc_max_period[idx];
282
283
local64_set(&hwc->prev_count, (unsigned long)(-left));
284
285
alpha_write_pmc(idx, (unsigned long)(-left));
286
287
perf_event_update_userpage(event);
288
289
return ret;
290
}
291
292
293
/*
294
* Calculates the count (the 'delta') since the last time the PMC was read.
295
*
296
* As the PMCs' full period can easily be exceeded within the perf system
297
* sampling period we cannot use any high order bits as a guard bit in the
298
* PMCs to detect overflow as is done by other architectures. The code here
299
* calculates the delta on the basis that there is no overflow when ovf is
300
* zero. The value passed via ovf by the interrupt handler corrects for
301
* overflow.
302
*
303
* This can be racey on rare occasions -- a call to this routine can occur
304
* with an overflowed counter just before the PMI service routine is called.
305
* The check for delta negative hopefully always rectifies this situation.
306
*/
307
static unsigned long alpha_perf_event_update(struct perf_event *event,
308
struct hw_perf_event *hwc, int idx, long ovf)
309
{
310
long prev_raw_count, new_raw_count;
311
long delta;
312
313
again:
314
prev_raw_count = local64_read(&hwc->prev_count);
315
new_raw_count = alpha_read_pmc(idx);
316
317
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
318
new_raw_count) != prev_raw_count)
319
goto again;
320
321
delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
322
323
/* It is possible on very rare occasions that the PMC has overflowed
324
* but the interrupt is yet to come. Detect and fix this situation.
325
*/
326
if (unlikely(delta < 0)) {
327
delta += alpha_pmu->pmc_max_period[idx] + 1;
328
}
329
330
local64_add(delta, &event->count);
331
local64_sub(delta, &hwc->period_left);
332
333
return new_raw_count;
334
}
335
336
337
/*
338
* Collect all HW events into the array event[].
339
*/
340
static int collect_events(struct perf_event *group, int max_count,
341
struct perf_event *event[], unsigned long *evtype,
342
int *current_idx)
343
{
344
struct perf_event *pe;
345
int n = 0;
346
347
if (!is_software_event(group)) {
348
if (n >= max_count)
349
return -1;
350
event[n] = group;
351
evtype[n] = group->hw.event_base;
352
current_idx[n++] = PMC_NO_INDEX;
353
}
354
for_each_sibling_event(pe, group) {
355
if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
356
if (n >= max_count)
357
return -1;
358
event[n] = pe;
359
evtype[n] = pe->hw.event_base;
360
current_idx[n++] = PMC_NO_INDEX;
361
}
362
}
363
return n;
364
}
365
366
367
368
/*
369
* Check that a group of events can be simultaneously scheduled on to the PMU.
370
*/
371
static int alpha_check_constraints(struct perf_event **events,
372
unsigned long *evtypes, int n_ev)
373
{
374
375
/* No HW events is possible from hw_perf_group_sched_in(). */
376
if (n_ev == 0)
377
return 0;
378
379
if (n_ev > alpha_pmu->num_pmcs)
380
return -1;
381
382
return alpha_pmu->check_constraints(events, evtypes, n_ev);
383
}
384
385
386
/*
387
* If new events have been scheduled then update cpuc with the new
388
* configuration. This may involve shifting cycle counts from one PMC to
389
* another.
390
*/
391
static void maybe_change_configuration(struct cpu_hw_events *cpuc)
392
{
393
int j;
394
395
if (cpuc->n_added == 0)
396
return;
397
398
/* Find counters that are moving to another PMC and update */
399
for (j = 0; j < cpuc->n_events; j++) {
400
struct perf_event *pe = cpuc->event[j];
401
402
if (cpuc->current_idx[j] != PMC_NO_INDEX &&
403
cpuc->current_idx[j] != pe->hw.idx) {
404
alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
405
cpuc->current_idx[j] = PMC_NO_INDEX;
406
}
407
}
408
409
/* Assign to counters all unassigned events. */
410
cpuc->idx_mask = 0;
411
for (j = 0; j < cpuc->n_events; j++) {
412
struct perf_event *pe = cpuc->event[j];
413
struct hw_perf_event *hwc = &pe->hw;
414
int idx = hwc->idx;
415
416
if (cpuc->current_idx[j] == PMC_NO_INDEX) {
417
alpha_perf_event_set_period(pe, hwc, idx);
418
cpuc->current_idx[j] = idx;
419
}
420
421
if (!(hwc->state & PERF_HES_STOPPED))
422
cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
423
}
424
cpuc->config = cpuc->event[0]->hw.config_base;
425
}
426
427
428
429
/* Schedule perf HW event on to PMU.
430
* - this function is called from outside this module via the pmu struct
431
* returned from perf event initialisation.
432
*/
433
static int alpha_pmu_add(struct perf_event *event, int flags)
434
{
435
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
436
struct hw_perf_event *hwc = &event->hw;
437
int n0;
438
int ret;
439
unsigned long irq_flags;
440
441
/*
442
* The Sparc code has the IRQ disable first followed by the perf
443
* disable, however this can lead to an overflowed counter with the
444
* PMI disabled on rare occasions. The alpha_perf_event_update()
445
* routine should detect this situation by noting a negative delta,
446
* nevertheless we disable the PMCs first to enable a potential
447
* final PMI to occur before we disable interrupts.
448
*/
449
perf_pmu_disable(event->pmu);
450
local_irq_save(irq_flags);
451
452
/* Default to error to be returned */
453
ret = -EAGAIN;
454
455
/* Insert event on to PMU and if successful modify ret to valid return */
456
n0 = cpuc->n_events;
457
if (n0 < alpha_pmu->num_pmcs) {
458
cpuc->event[n0] = event;
459
cpuc->evtype[n0] = event->hw.event_base;
460
cpuc->current_idx[n0] = PMC_NO_INDEX;
461
462
if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
463
cpuc->n_events++;
464
cpuc->n_added++;
465
ret = 0;
466
}
467
}
468
469
hwc->state = PERF_HES_UPTODATE;
470
if (!(flags & PERF_EF_START))
471
hwc->state |= PERF_HES_STOPPED;
472
473
local_irq_restore(irq_flags);
474
perf_pmu_enable(event->pmu);
475
476
return ret;
477
}
478
479
480
481
/* Disable performance monitoring unit
482
* - this function is called from outside this module via the pmu struct
483
* returned from perf event initialisation.
484
*/
485
static void alpha_pmu_del(struct perf_event *event, int flags)
486
{
487
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
488
struct hw_perf_event *hwc = &event->hw;
489
unsigned long irq_flags;
490
int j;
491
492
perf_pmu_disable(event->pmu);
493
local_irq_save(irq_flags);
494
495
for (j = 0; j < cpuc->n_events; j++) {
496
if (event == cpuc->event[j]) {
497
int idx = cpuc->current_idx[j];
498
499
/* Shift remaining entries down into the existing
500
* slot.
501
*/
502
while (++j < cpuc->n_events) {
503
cpuc->event[j - 1] = cpuc->event[j];
504
cpuc->evtype[j - 1] = cpuc->evtype[j];
505
cpuc->current_idx[j - 1] =
506
cpuc->current_idx[j];
507
}
508
509
/* Absorb the final count and turn off the event. */
510
alpha_perf_event_update(event, hwc, idx, 0);
511
perf_event_update_userpage(event);
512
513
cpuc->idx_mask &= ~(1UL<<idx);
514
cpuc->n_events--;
515
break;
516
}
517
}
518
519
local_irq_restore(irq_flags);
520
perf_pmu_enable(event->pmu);
521
}
522
523
524
static void alpha_pmu_read(struct perf_event *event)
525
{
526
struct hw_perf_event *hwc = &event->hw;
527
528
alpha_perf_event_update(event, hwc, hwc->idx, 0);
529
}
530
531
532
static void alpha_pmu_stop(struct perf_event *event, int flags)
533
{
534
struct hw_perf_event *hwc = &event->hw;
535
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
536
537
if (!(hwc->state & PERF_HES_STOPPED)) {
538
cpuc->idx_mask &= ~(1UL<<hwc->idx);
539
hwc->state |= PERF_HES_STOPPED;
540
}
541
542
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
543
alpha_perf_event_update(event, hwc, hwc->idx, 0);
544
hwc->state |= PERF_HES_UPTODATE;
545
}
546
547
if (cpuc->enabled)
548
wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx));
549
}
550
551
552
static void alpha_pmu_start(struct perf_event *event, int flags)
553
{
554
struct hw_perf_event *hwc = &event->hw;
555
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
556
557
if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
558
return;
559
560
if (flags & PERF_EF_RELOAD) {
561
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
562
alpha_perf_event_set_period(event, hwc, hwc->idx);
563
}
564
565
hwc->state = 0;
566
567
cpuc->idx_mask |= 1UL<<hwc->idx;
568
if (cpuc->enabled)
569
wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
570
}
571
572
573
/*
574
* Check that CPU performance counters are supported.
575
* - currently support EV67 and later CPUs.
576
* - actually some later revisions of the EV6 have the same PMC model as the
577
* EV67 but we don't do sufficiently deep CPU detection to detect them.
578
* Bad luck to the very few people who might have one, I guess.
579
*/
580
static int supported_cpu(void)
581
{
582
struct percpu_struct *cpu;
583
unsigned long cputype;
584
585
/* Get cpu type from HW */
586
cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
587
cputype = cpu->type & 0xffffffff;
588
/* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
589
return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
590
}
591
592
593
594
static void hw_perf_event_destroy(struct perf_event *event)
595
{
596
/* Nothing to be done! */
597
return;
598
}
599
600
601
602
static int __hw_perf_event_init(struct perf_event *event)
603
{
604
struct perf_event_attr *attr = &event->attr;
605
struct hw_perf_event *hwc = &event->hw;
606
struct perf_event *evts[MAX_HWEVENTS];
607
unsigned long evtypes[MAX_HWEVENTS];
608
int idx_rubbish_bin[MAX_HWEVENTS];
609
int ev;
610
int n;
611
612
/* We only support a limited range of HARDWARE event types with one
613
* only programmable via a RAW event type.
614
*/
615
if (attr->type == PERF_TYPE_HARDWARE) {
616
if (attr->config >= alpha_pmu->max_events)
617
return -EINVAL;
618
ev = alpha_pmu->event_map[attr->config];
619
} else if (attr->type == PERF_TYPE_HW_CACHE) {
620
return -EOPNOTSUPP;
621
} else if (attr->type == PERF_TYPE_RAW) {
622
if (!alpha_pmu->raw_event_valid(attr->config))
623
return -EINVAL;
624
ev = attr->config;
625
} else {
626
return -EOPNOTSUPP;
627
}
628
629
if (ev < 0) {
630
return ev;
631
}
632
633
/*
634
* We place the event type in event_base here and leave calculation
635
* of the codes to programme the PMU for alpha_pmu_enable() because
636
* it is only then we will know what HW events are actually
637
* scheduled on to the PMU. At that point the code to programme the
638
* PMU is put into config_base and the PMC to use is placed into
639
* idx. We initialise idx (below) to PMC_NO_INDEX to indicate that
640
* it is yet to be determined.
641
*/
642
hwc->event_base = ev;
643
644
/* Collect events in a group together suitable for calling
645
* alpha_check_constraints() to verify that the group as a whole can
646
* be scheduled on to the PMU.
647
*/
648
n = 0;
649
if (event->group_leader != event) {
650
n = collect_events(event->group_leader,
651
alpha_pmu->num_pmcs - 1,
652
evts, evtypes, idx_rubbish_bin);
653
if (n < 0)
654
return -EINVAL;
655
}
656
evtypes[n] = hwc->event_base;
657
evts[n] = event;
658
659
if (alpha_check_constraints(evts, evtypes, n + 1))
660
return -EINVAL;
661
662
/* Indicate that PMU config and idx are yet to be determined. */
663
hwc->config_base = 0;
664
hwc->idx = PMC_NO_INDEX;
665
666
event->destroy = hw_perf_event_destroy;
667
668
/*
669
* Most architectures reserve the PMU for their use at this point.
670
* As there is no existing mechanism to arbitrate usage and there
671
* appears to be no other user of the Alpha PMU we just assume
672
* that we can just use it, hence a NO-OP here.
673
*
674
* Maybe an alpha_reserve_pmu() routine should be implemented but is
675
* anything else ever going to use it?
676
*/
677
678
if (!hwc->sample_period) {
679
hwc->sample_period = alpha_pmu->pmc_max_period[0];
680
hwc->last_period = hwc->sample_period;
681
local64_set(&hwc->period_left, hwc->sample_period);
682
}
683
684
return 0;
685
}
686
687
/*
688
* Main entry point to initialise a HW performance event.
689
*/
690
static int alpha_pmu_event_init(struct perf_event *event)
691
{
692
/* does not support taken branch sampling */
693
if (has_branch_stack(event))
694
return -EOPNOTSUPP;
695
696
switch (event->attr.type) {
697
case PERF_TYPE_RAW:
698
case PERF_TYPE_HARDWARE:
699
case PERF_TYPE_HW_CACHE:
700
break;
701
702
default:
703
return -ENOENT;
704
}
705
706
if (!alpha_pmu)
707
return -ENODEV;
708
709
/* Do the real initialisation work. */
710
return __hw_perf_event_init(event);
711
}
712
713
/*
714
* Main entry point - enable HW performance counters.
715
*/
716
static void alpha_pmu_enable(struct pmu *pmu)
717
{
718
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
719
720
if (cpuc->enabled)
721
return;
722
723
cpuc->enabled = 1;
724
barrier();
725
726
if (cpuc->n_events > 0) {
727
/* Update cpuc with information from any new scheduled events. */
728
maybe_change_configuration(cpuc);
729
730
/* Start counting the desired events. */
731
wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
732
wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
733
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
734
}
735
}
736
737
738
/*
739
* Main entry point - disable HW performance counters.
740
*/
741
742
static void alpha_pmu_disable(struct pmu *pmu)
743
{
744
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
745
746
if (!cpuc->enabled)
747
return;
748
749
cpuc->enabled = 0;
750
cpuc->n_added = 0;
751
752
wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
753
}
754
755
static struct pmu pmu = {
756
.pmu_enable = alpha_pmu_enable,
757
.pmu_disable = alpha_pmu_disable,
758
.event_init = alpha_pmu_event_init,
759
.add = alpha_pmu_add,
760
.del = alpha_pmu_del,
761
.start = alpha_pmu_start,
762
.stop = alpha_pmu_stop,
763
.read = alpha_pmu_read,
764
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
765
};
766
767
768
/*
769
* Main entry point - don't know when this is called but it
770
* obviously dumps debug info.
771
*/
772
void perf_event_print_debug(void)
773
{
774
unsigned long flags;
775
unsigned long pcr;
776
int pcr0, pcr1;
777
int cpu;
778
779
if (!supported_cpu())
780
return;
781
782
local_irq_save(flags);
783
784
cpu = smp_processor_id();
785
786
pcr = wrperfmon(PERFMON_CMD_READ, 0);
787
pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
788
pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
789
790
pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
791
792
local_irq_restore(flags);
793
}
794
795
796
/*
797
* Performance Monitoring Interrupt Service Routine called when a PMC
798
* overflows. The PMC that overflowed is passed in la_ptr.
799
*/
800
static void alpha_perf_event_irq_handler(unsigned long la_ptr,
801
struct pt_regs *regs)
802
{
803
struct cpu_hw_events *cpuc;
804
struct perf_sample_data data;
805
struct perf_event *event;
806
struct hw_perf_event *hwc;
807
int idx, j;
808
809
__this_cpu_inc(irq_pmi_count);
810
cpuc = this_cpu_ptr(&cpu_hw_events);
811
812
/* Completely counting through the PMC's period to trigger a new PMC
813
* overflow interrupt while in this interrupt routine is utterly
814
* disastrous! The EV6 and EV67 counters are sufficiently large to
815
* prevent this but to be really sure disable the PMCs.
816
*/
817
wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
818
819
/* la_ptr is the counter that overflowed. */
820
if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) {
821
/* This should never occur! */
822
irq_err_count++;
823
pr_warn("PMI: silly index %ld\n", la_ptr);
824
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
825
return;
826
}
827
828
idx = la_ptr;
829
830
for (j = 0; j < cpuc->n_events; j++) {
831
if (cpuc->current_idx[j] == idx)
832
break;
833
}
834
835
if (unlikely(j == cpuc->n_events)) {
836
/* This can occur if the event is disabled right on a PMC overflow. */
837
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
838
return;
839
}
840
841
event = cpuc->event[j];
842
843
if (unlikely(!event)) {
844
/* This should never occur! */
845
irq_err_count++;
846
pr_warn("PMI: No event at index %d!\n", idx);
847
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
848
return;
849
}
850
851
hwc = &event->hw;
852
alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
853
perf_sample_data_init(&data, 0, hwc->last_period);
854
855
if (alpha_perf_event_set_period(event, hwc, idx))
856
perf_event_overflow(event, &data, regs);
857
858
wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
859
860
return;
861
}
862
863
864
865
/*
866
* Init call to initialise performance events at kernel startup.
867
*/
868
static int __init init_hw_perf_events(void)
869
{
870
pr_info("Performance events: ");
871
872
if (!supported_cpu()) {
873
pr_cont("No support for your CPU.\n");
874
return 0;
875
}
876
877
pr_cont("Supported CPU type!\n");
878
879
/* Override performance counter IRQ vector */
880
881
perf_irq = alpha_perf_event_irq_handler;
882
883
/* And set up PMU specification */
884
alpha_pmu = &ev67_pmu;
885
886
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
887
888
return 0;
889
}
890
early_initcall(init_hw_perf_events);
891
892