Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/alpha/lib/ev6-clear_user.S
26426 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* arch/alpha/lib/ev6-clear_user.S
4
* 21264 version contributed by Rick Gorton <[email protected]>
5
*
6
* Zero user space, handling exceptions as we go.
7
*
8
* We have to make sure that $0 is always up-to-date and contains the
9
* right "bytes left to zero" value (and that it is updated only _after_
10
* a successful copy). There is also some rather minor exception setup
11
* stuff.
12
*
13
* Much of the information about 21264 scheduling/coding comes from:
14
* Compiler Writer's Guide for the Alpha 21264
15
* abbreviated as 'CWG' in other comments here
16
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
17
* Scheduling notation:
18
* E - either cluster
19
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
20
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
21
* Try not to change the actual algorithm if possible for consistency.
22
* Determining actual stalls (other than slotting) doesn't appear to be easy to do.
23
* From perusing the source code context where this routine is called, it is
24
* a fair assumption that significant fractions of entire pages are zeroed, so
25
* it's going to be worth the effort to hand-unroll a big loop, and use wh64.
26
* ASSUMPTION:
27
* The believed purpose of only updating $0 after a store is that a signal
28
* may come along during the execution of this chunk of code, and we don't
29
* want to leave a hole (and we also want to avoid repeating lots of work)
30
*/
31
32
#include <linux/export.h>
33
/* Allow an exception for an insn; exit if we get one. */
34
#define EX(x,y...) \
35
99: x,##y; \
36
.section __ex_table,"a"; \
37
.long 99b - .; \
38
lda $31, $exception-99b($31); \
39
.previous
40
41
.set noat
42
.set noreorder
43
.align 4
44
45
.globl __clear_user
46
.ent __clear_user
47
.frame $30, 0, $26
48
.prologue 0
49
50
# Pipeline info : Slotting & Comments
51
__clear_user:
52
and $17, $17, $0
53
and $16, 7, $4 # .. E .. .. : find dest head misalignment
54
beq $0, $zerolength # U .. .. .. : U L U L
55
56
addq $0, $4, $1 # .. .. .. E : bias counter
57
and $1, 7, $2 # .. .. E .. : number of misaligned bytes in tail
58
# Note - we never actually use $2, so this is a moot computation
59
# and we can rewrite this later...
60
srl $1, 3, $1 # .. E .. .. : number of quadwords to clear
61
beq $4, $headalign # U .. .. .. : U L U L
62
63
/*
64
* Head is not aligned. Write (8 - $4) bytes to head of destination
65
* This means $16 is known to be misaligned
66
*/
67
EX( ldq_u $5, 0($16) ) # .. .. .. L : load dst word to mask back in
68
beq $1, $onebyte # .. .. U .. : sub-word store?
69
mskql $5, $16, $5 # .. U .. .. : take care of misaligned head
70
addq $16, 8, $16 # E .. .. .. : L U U L
71
72
EX( stq_u $5, -8($16) ) # .. .. .. L :
73
subq $1, 1, $1 # .. .. E .. :
74
addq $0, $4, $0 # .. E .. .. : bytes left -= 8 - misalignment
75
subq $0, 8, $0 # E .. .. .. : U L U L
76
77
.align 4
78
/*
79
* (The .align directive ought to be a moot point)
80
* values upon initial entry to the loop
81
* $1 is number of quadwords to clear (zero is a valid value)
82
* $2 is number of trailing bytes (0..7) ($2 never used...)
83
* $16 is known to be aligned 0mod8
84
*/
85
$headalign:
86
subq $1, 16, $4 # .. .. .. E : If < 16, we can not use the huge loop
87
and $16, 0x3f, $2 # .. .. E .. : Forward work for huge loop
88
subq $2, 0x40, $3 # .. E .. .. : bias counter (huge loop)
89
blt $4, $trailquad # U .. .. .. : U L U L
90
91
/*
92
* We know that we're going to do at least 16 quads, which means we are
93
* going to be able to use the large block clear loop at least once.
94
* Figure out how many quads we need to clear before we are 0mod64 aligned
95
* so we can use the wh64 instruction.
96
*/
97
98
nop # .. .. .. E
99
nop # .. .. E ..
100
nop # .. E .. ..
101
beq $3, $bigalign # U .. .. .. : U L U L : Aligned 0mod64
102
103
$alignmod64:
104
EX( stq_u $31, 0($16) ) # .. .. .. L
105
addq $3, 8, $3 # .. .. E ..
106
subq $0, 8, $0 # .. E .. ..
107
nop # E .. .. .. : U L U L
108
109
nop # .. .. .. E
110
subq $1, 1, $1 # .. .. E ..
111
addq $16, 8, $16 # .. E .. ..
112
blt $3, $alignmod64 # U .. .. .. : U L U L
113
114
$bigalign:
115
/*
116
* $0 is the number of bytes left
117
* $1 is the number of quads left
118
* $16 is aligned 0mod64
119
* we know that we'll be taking a minimum of one trip through
120
* CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
121
* We are _not_ going to update $0 after every single store. That
122
* would be silly, because there will be cross-cluster dependencies
123
* no matter how the code is scheduled. By doing it in slightly
124
* staggered fashion, we can still do this loop in 5 fetches
125
* The worse case will be doing two extra quads in some future execution,
126
* in the event of an interrupted clear.
127
* Assumes the wh64 needs to be for 2 trips through the loop in the future
128
* The wh64 is issued on for the starting destination address for trip +2
129
* through the loop, and if there are less than two trips left, the target
130
* address will be for the current trip.
131
*/
132
nop # E :
133
nop # E :
134
nop # E :
135
bis $16,$16,$3 # E : U L U L : Initial wh64 address is dest
136
/* This might actually help for the current trip... */
137
138
$do_wh64:
139
wh64 ($3) # .. .. .. L1 : memory subsystem hint
140
subq $1, 16, $4 # .. .. E .. : Forward calculation - repeat the loop?
141
EX( stq_u $31, 0($16) ) # .. L .. ..
142
subq $0, 8, $0 # E .. .. .. : U L U L
143
144
addq $16, 128, $3 # E : Target address of wh64
145
EX( stq_u $31, 8($16) ) # L :
146
EX( stq_u $31, 16($16) ) # L :
147
subq $0, 16, $0 # E : U L L U
148
149
nop # E :
150
EX( stq_u $31, 24($16) ) # L :
151
EX( stq_u $31, 32($16) ) # L :
152
subq $0, 168, $5 # E : U L L U : two trips through the loop left?
153
/* 168 = 192 - 24, since we've already completed some stores */
154
155
subq $0, 16, $0 # E :
156
EX( stq_u $31, 40($16) ) # L :
157
EX( stq_u $31, 48($16) ) # L :
158
cmovlt $5, $16, $3 # E : U L L U : Latency 2, extra mapping cycle
159
160
subq $1, 8, $1 # E :
161
subq $0, 16, $0 # E :
162
EX( stq_u $31, 56($16) ) # L :
163
nop # E : U L U L
164
165
nop # E :
166
subq $0, 8, $0 # E :
167
addq $16, 64, $16 # E :
168
bge $4, $do_wh64 # U : U L U L
169
170
$trailquad:
171
# zero to 16 quadwords left to store, plus any trailing bytes
172
# $1 is the number of quadwords left to go.
173
#
174
nop # .. .. .. E
175
nop # .. .. E ..
176
nop # .. E .. ..
177
beq $1, $trailbytes # U .. .. .. : U L U L : Only 0..7 bytes to go
178
179
$onequad:
180
EX( stq_u $31, 0($16) ) # .. .. .. L
181
subq $1, 1, $1 # .. .. E ..
182
subq $0, 8, $0 # .. E .. ..
183
nop # E .. .. .. : U L U L
184
185
nop # .. .. .. E
186
nop # .. .. E ..
187
addq $16, 8, $16 # .. E .. ..
188
bgt $1, $onequad # U .. .. .. : U L U L
189
190
# We have an unknown number of bytes left to go.
191
$trailbytes:
192
nop # .. .. .. E
193
nop # .. .. E ..
194
nop # .. E .. ..
195
beq $0, $zerolength # U .. .. .. : U L U L
196
197
# $0 contains the number of bytes left to copy (0..31)
198
# so we will use $0 as the loop counter
199
# We know for a fact that $0 > 0 zero due to previous context
200
$onebyte:
201
EX( stb $31, 0($16) ) # .. .. .. L
202
subq $0, 1, $0 # .. .. E .. :
203
addq $16, 1, $16 # .. E .. .. :
204
bgt $0, $onebyte # U .. .. .. : U L U L
205
206
$zerolength:
207
$exception: # Destination for exception recovery(?)
208
nop # .. .. .. E :
209
nop # .. .. E .. :
210
nop # .. E .. .. :
211
ret $31, ($26), 1 # L0 .. .. .. : L U L U
212
.end __clear_user
213
EXPORT_SYMBOL(__clear_user)
214
215