Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/alpha/lib/ev6-stxcpy.S
26426 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* arch/alpha/lib/ev6-stxcpy.S
4
* 21264 version contributed by Rick Gorton <[email protected]>
5
*
6
* Copy a null-terminated string from SRC to DST.
7
*
8
* This is an internal routine used by strcpy, stpcpy, and strcat.
9
* As such, it uses special linkage conventions to make implementation
10
* of these public functions more efficient.
11
*
12
* On input:
13
* t9 = return address
14
* a0 = DST
15
* a1 = SRC
16
*
17
* On output:
18
* t12 = bitmask (with one bit set) indicating the last byte written
19
* a0 = unaligned address of the last *word* written
20
*
21
* Furthermore, v0, a3-a5, t11, and t12 are untouched.
22
*
23
* Much of the information about 21264 scheduling/coding comes from:
24
* Compiler Writer's Guide for the Alpha 21264
25
* abbreviated as 'CWG' in other comments here
26
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
27
* Scheduling notation:
28
* E - either cluster
29
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
30
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
31
* Try not to change the actual algorithm if possible for consistency.
32
*/
33
34
#include <asm/regdef.h>
35
36
.set noat
37
.set noreorder
38
39
.text
40
41
/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
42
doesn't like putting the entry point for a procedure somewhere in the
43
middle of the procedure descriptor. Work around this by putting the
44
aligned copy in its own procedure descriptor */
45
46
47
.ent stxcpy_aligned
48
.align 4
49
stxcpy_aligned:
50
.frame sp, 0, t9
51
.prologue 0
52
53
/* On entry to this basic block:
54
t0 == the first destination word for masking back in
55
t1 == the first source word. */
56
57
/* Create the 1st output word and detect 0's in the 1st input word. */
58
lda t2, -1 # E : build a mask against false zero
59
mskqh t2, a1, t2 # U : detection in the src word (stall)
60
mskqh t1, a1, t3 # U :
61
ornot t1, t2, t2 # E : (stall)
62
63
mskql t0, a1, t0 # U : assemble the first output word
64
cmpbge zero, t2, t8 # E : bits set iff null found
65
or t0, t3, t1 # E : (stall)
66
bne t8, $a_eos # U : (stall)
67
68
/* On entry to this basic block:
69
t0 == the first destination word for masking back in
70
t1 == a source word not containing a null. */
71
/* Nops here to separate store quads from load quads */
72
73
$a_loop:
74
stq_u t1, 0(a0) # L :
75
addq a0, 8, a0 # E :
76
nop
77
nop
78
79
ldq_u t1, 0(a1) # L : Latency=3
80
addq a1, 8, a1 # E :
81
cmpbge zero, t1, t8 # E : (3 cycle stall)
82
beq t8, $a_loop # U : (stall for t8)
83
84
/* Take care of the final (partial) word store.
85
On entry to this basic block we have:
86
t1 == the source word containing the null
87
t8 == the cmpbge mask that found it. */
88
$a_eos:
89
negq t8, t6 # E : find low bit set
90
and t8, t6, t12 # E : (stall)
91
/* For the sake of the cache, don't read a destination word
92
if we're not going to need it. */
93
and t12, 0x80, t6 # E : (stall)
94
bne t6, 1f # U : (stall)
95
96
/* We're doing a partial word store and so need to combine
97
our source and original destination words. */
98
ldq_u t0, 0(a0) # L : Latency=3
99
subq t12, 1, t6 # E :
100
zapnot t1, t6, t1 # U : clear src bytes >= null (stall)
101
or t12, t6, t8 # E : (stall)
102
103
zap t0, t8, t0 # E : clear dst bytes <= null
104
or t0, t1, t1 # E : (stall)
105
nop
106
nop
107
108
1: stq_u t1, 0(a0) # L :
109
ret (t9) # L0 : Latency=3
110
nop
111
nop
112
113
.end stxcpy_aligned
114
115
.align 4
116
.ent __stxcpy
117
.globl __stxcpy
118
__stxcpy:
119
.frame sp, 0, t9
120
.prologue 0
121
122
/* Are source and destination co-aligned? */
123
xor a0, a1, t0 # E :
124
unop # E :
125
and t0, 7, t0 # E : (stall)
126
bne t0, $unaligned # U : (stall)
127
128
/* We are co-aligned; take care of a partial first word. */
129
ldq_u t1, 0(a1) # L : load first src word
130
and a0, 7, t0 # E : take care not to load a word ...
131
addq a1, 8, a1 # E :
132
beq t0, stxcpy_aligned # U : ... if we wont need it (stall)
133
134
ldq_u t0, 0(a0) # L :
135
br stxcpy_aligned # L0 : Latency=3
136
nop
137
nop
138
139
140
/* The source and destination are not co-aligned. Align the destination
141
and cope. We have to be very careful about not reading too much and
142
causing a SEGV. */
143
144
.align 4
145
$u_head:
146
/* We know just enough now to be able to assemble the first
147
full source word. We can still find a zero at the end of it
148
that prevents us from outputting the whole thing.
149
150
On entry to this basic block:
151
t0 == the first dest word, for masking back in, if needed else 0
152
t1 == the low bits of the first source word
153
t6 == bytemask that is -1 in dest word bytes */
154
155
ldq_u t2, 8(a1) # L :
156
addq a1, 8, a1 # E :
157
extql t1, a1, t1 # U : (stall on a1)
158
extqh t2, a1, t4 # U : (stall on a1)
159
160
mskql t0, a0, t0 # U :
161
or t1, t4, t1 # E :
162
mskqh t1, a0, t1 # U : (stall on t1)
163
or t0, t1, t1 # E : (stall on t1)
164
165
or t1, t6, t6 # E :
166
cmpbge zero, t6, t8 # E : (stall)
167
lda t6, -1 # E : for masking just below
168
bne t8, $u_final # U : (stall)
169
170
mskql t6, a1, t6 # U : mask out the bits we have
171
or t6, t2, t2 # E : already extracted before (stall)
172
cmpbge zero, t2, t8 # E : testing eos (stall)
173
bne t8, $u_late_head_exit # U : (stall)
174
175
/* Finally, we've got all the stupid leading edge cases taken care
176
of and we can set up to enter the main loop. */
177
178
stq_u t1, 0(a0) # L : store first output word
179
addq a0, 8, a0 # E :
180
extql t2, a1, t0 # U : position ho-bits of lo word
181
ldq_u t2, 8(a1) # U : read next high-order source word
182
183
addq a1, 8, a1 # E :
184
cmpbge zero, t2, t8 # E : (stall for t2)
185
nop # E :
186
bne t8, $u_eos # U : (stall)
187
188
/* Unaligned copy main loop. In order to avoid reading too much,
189
the loop is structured to detect zeros in aligned source words.
190
This has, unfortunately, effectively pulled half of a loop
191
iteration out into the head and half into the tail, but it does
192
prevent nastiness from accumulating in the very thing we want
193
to run as fast as possible.
194
195
On entry to this basic block:
196
t0 == the shifted high-order bits from the previous source word
197
t2 == the unshifted current source word
198
199
We further know that t2 does not contain a null terminator. */
200
201
.align 3
202
$u_loop:
203
extqh t2, a1, t1 # U : extract high bits for current word
204
addq a1, 8, a1 # E : (stall)
205
extql t2, a1, t3 # U : extract low bits for next time (stall)
206
addq a0, 8, a0 # E :
207
208
or t0, t1, t1 # E : current dst word now complete
209
ldq_u t2, 0(a1) # L : Latency=3 load high word for next time
210
stq_u t1, -8(a0) # L : save the current word (stall)
211
mov t3, t0 # E :
212
213
cmpbge zero, t2, t8 # E : test new word for eos
214
beq t8, $u_loop # U : (stall)
215
nop
216
nop
217
218
/* We've found a zero somewhere in the source word we just read.
219
If it resides in the lower half, we have one (probably partial)
220
word to write out, and if it resides in the upper half, we
221
have one full and one partial word left to write out.
222
223
On entry to this basic block:
224
t0 == the shifted high-order bits from the previous source word
225
t2 == the unshifted current source word. */
226
$u_eos:
227
extqh t2, a1, t1 # U :
228
or t0, t1, t1 # E : first (partial) source word complete (stall)
229
cmpbge zero, t1, t8 # E : is the null in this first bit? (stall)
230
bne t8, $u_final # U : (stall)
231
232
$u_late_head_exit:
233
stq_u t1, 0(a0) # L : the null was in the high-order bits
234
addq a0, 8, a0 # E :
235
extql t2, a1, t1 # U :
236
cmpbge zero, t1, t8 # E : (stall)
237
238
/* Take care of a final (probably partial) result word.
239
On entry to this basic block:
240
t1 == assembled source word
241
t8 == cmpbge mask that found the null. */
242
$u_final:
243
negq t8, t6 # E : isolate low bit set
244
and t6, t8, t12 # E : (stall)
245
and t12, 0x80, t6 # E : avoid dest word load if we can (stall)
246
bne t6, 1f # U : (stall)
247
248
ldq_u t0, 0(a0) # E :
249
subq t12, 1, t6 # E :
250
or t6, t12, t8 # E : (stall)
251
zapnot t1, t6, t1 # U : kill source bytes >= null (stall)
252
253
zap t0, t8, t0 # U : kill dest bytes <= null (2 cycle data stall)
254
or t0, t1, t1 # E : (stall)
255
nop
256
nop
257
258
1: stq_u t1, 0(a0) # L :
259
ret (t9) # L0 : Latency=3
260
nop
261
nop
262
263
/* Unaligned copy entry point. */
264
.align 4
265
$unaligned:
266
267
ldq_u t1, 0(a1) # L : load first source word
268
and a0, 7, t4 # E : find dest misalignment
269
and a1, 7, t5 # E : find src misalignment
270
/* Conditionally load the first destination word and a bytemask
271
with 0xff indicating that the destination byte is sacrosanct. */
272
mov zero, t0 # E :
273
274
mov zero, t6 # E :
275
beq t4, 1f # U :
276
ldq_u t0, 0(a0) # L :
277
lda t6, -1 # E :
278
279
mskql t6, a0, t6 # U :
280
nop
281
nop
282
nop
283
1:
284
subq a1, t4, a1 # E : sub dest misalignment from src addr
285
/* If source misalignment is larger than dest misalignment, we need
286
extra startup checks to avoid SEGV. */
287
cmplt t4, t5, t12 # E :
288
beq t12, $u_head # U :
289
lda t2, -1 # E : mask out leading garbage in source
290
291
mskqh t2, t5, t2 # U :
292
ornot t1, t2, t3 # E : (stall)
293
cmpbge zero, t3, t8 # E : is there a zero? (stall)
294
beq t8, $u_head # U : (stall)
295
296
/* At this point we've found a zero in the first partial word of
297
the source. We need to isolate the valid source data and mask
298
it into the original destination data. (Incidentally, we know
299
that we'll need at least one byte of that original dest word.) */
300
301
ldq_u t0, 0(a0) # L :
302
negq t8, t6 # E : build bitmask of bytes <= zero
303
and t6, t8, t12 # E : (stall)
304
and a1, 7, t5 # E :
305
306
subq t12, 1, t6 # E :
307
or t6, t12, t8 # E : (stall)
308
srl t12, t5, t12 # U : adjust final null return value
309
zapnot t2, t8, t2 # U : prepare source word; mirror changes (stall)
310
311
and t1, t2, t1 # E : to source validity mask
312
extql t2, a1, t2 # U :
313
extql t1, a1, t1 # U : (stall)
314
andnot t0, t2, t0 # .. e1 : zero place for source to reside (stall)
315
316
or t0, t1, t1 # e1 : and put it there
317
stq_u t1, 0(a0) # .. e0 : (stall)
318
ret (t9) # e1 :
319
nop
320
321
.end __stxcpy
322
323
324