Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/alpha/lib/ev6-stxncpy.S
26426 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* arch/alpha/lib/ev6-stxncpy.S
4
* 21264 version contributed by Rick Gorton <[email protected]>
5
*
6
* Copy no more than COUNT bytes of the null-terminated string from
7
* SRC to DST.
8
*
9
* This is an internal routine used by strncpy, stpncpy, and strncat.
10
* As such, it uses special linkage conventions to make implementation
11
* of these public functions more efficient.
12
*
13
* On input:
14
* t9 = return address
15
* a0 = DST
16
* a1 = SRC
17
* a2 = COUNT
18
*
19
* Furthermore, COUNT may not be zero.
20
*
21
* On output:
22
* t0 = last word written
23
* t10 = bitmask (with one bit set) indicating the byte position of
24
* the end of the range specified by COUNT
25
* t12 = bitmask (with one bit set) indicating the last byte written
26
* a0 = unaligned address of the last *word* written
27
* a2 = the number of full words left in COUNT
28
*
29
* Furthermore, v0, a3-a5, t11, and $at are untouched.
30
*
31
* Much of the information about 21264 scheduling/coding comes from:
32
* Compiler Writer's Guide for the Alpha 21264
33
* abbreviated as 'CWG' in other comments here
34
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
35
* Scheduling notation:
36
* E - either cluster
37
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
38
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
39
* Try not to change the actual algorithm if possible for consistency.
40
*/
41
42
#include <asm/regdef.h>
43
44
.set noat
45
.set noreorder
46
47
.text
48
49
/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
50
doesn't like putting the entry point for a procedure somewhere in the
51
middle of the procedure descriptor. Work around this by putting the
52
aligned copy in its own procedure descriptor */
53
54
55
.ent stxncpy_aligned
56
.align 4
57
stxncpy_aligned:
58
.frame sp, 0, t9, 0
59
.prologue 0
60
61
/* On entry to this basic block:
62
t0 == the first destination word for masking back in
63
t1 == the first source word. */
64
65
/* Create the 1st output word and detect 0's in the 1st input word. */
66
lda t2, -1 # E : build a mask against false zero
67
mskqh t2, a1, t2 # U : detection in the src word (stall)
68
mskqh t1, a1, t3 # U :
69
ornot t1, t2, t2 # E : (stall)
70
71
mskql t0, a1, t0 # U : assemble the first output word
72
cmpbge zero, t2, t8 # E : bits set iff null found
73
or t0, t3, t0 # E : (stall)
74
beq a2, $a_eoc # U :
75
76
bne t8, $a_eos # U :
77
nop
78
nop
79
nop
80
81
/* On entry to this basic block:
82
t0 == a source word not containing a null. */
83
84
/*
85
* nops here to:
86
* separate store quads from load quads
87
* limit of 1 bcond/quad to permit training
88
*/
89
$a_loop:
90
stq_u t0, 0(a0) # L :
91
addq a0, 8, a0 # E :
92
subq a2, 1, a2 # E :
93
nop
94
95
ldq_u t0, 0(a1) # L :
96
addq a1, 8, a1 # E :
97
cmpbge zero, t0, t8 # E :
98
beq a2, $a_eoc # U :
99
100
beq t8, $a_loop # U :
101
nop
102
nop
103
nop
104
105
/* Take care of the final (partial) word store. At this point
106
the end-of-count bit is set in t8 iff it applies.
107
108
On entry to this basic block we have:
109
t0 == the source word containing the null
110
t8 == the cmpbge mask that found it. */
111
112
$a_eos:
113
negq t8, t12 # E : find low bit set
114
and t8, t12, t12 # E : (stall)
115
/* For the sake of the cache, don't read a destination word
116
if we're not going to need it. */
117
and t12, 0x80, t6 # E : (stall)
118
bne t6, 1f # U : (stall)
119
120
/* We're doing a partial word store and so need to combine
121
our source and original destination words. */
122
ldq_u t1, 0(a0) # L :
123
subq t12, 1, t6 # E :
124
or t12, t6, t8 # E : (stall)
125
zapnot t0, t8, t0 # U : clear src bytes > null (stall)
126
127
zap t1, t8, t1 # .. e1 : clear dst bytes <= null
128
or t0, t1, t0 # e1 : (stall)
129
nop
130
nop
131
132
1: stq_u t0, 0(a0) # L :
133
ret (t9) # L0 : Latency=3
134
nop
135
nop
136
137
/* Add the end-of-count bit to the eos detection bitmask. */
138
$a_eoc:
139
or t10, t8, t8 # E :
140
br $a_eos # L0 : Latency=3
141
nop
142
nop
143
144
.end stxncpy_aligned
145
146
.align 4
147
.ent __stxncpy
148
.globl __stxncpy
149
__stxncpy:
150
.frame sp, 0, t9, 0
151
.prologue 0
152
153
/* Are source and destination co-aligned? */
154
xor a0, a1, t1 # E :
155
and a0, 7, t0 # E : find dest misalignment
156
and t1, 7, t1 # E : (stall)
157
addq a2, t0, a2 # E : bias count by dest misalignment (stall)
158
159
subq a2, 1, a2 # E :
160
and a2, 7, t2 # E : (stall)
161
srl a2, 3, a2 # U : a2 = loop counter = (count - 1)/8 (stall)
162
addq zero, 1, t10 # E :
163
164
sll t10, t2, t10 # U : t10 = bitmask of last count byte
165
bne t1, $unaligned # U :
166
/* We are co-aligned; take care of a partial first word. */
167
ldq_u t1, 0(a1) # L : load first src word
168
addq a1, 8, a1 # E :
169
170
beq t0, stxncpy_aligned # U : avoid loading dest word if not needed
171
ldq_u t0, 0(a0) # L :
172
nop
173
nop
174
175
br stxncpy_aligned # .. e1 :
176
nop
177
nop
178
nop
179
180
181
182
/* The source and destination are not co-aligned. Align the destination
183
and cope. We have to be very careful about not reading too much and
184
causing a SEGV. */
185
186
.align 4
187
$u_head:
188
/* We know just enough now to be able to assemble the first
189
full source word. We can still find a zero at the end of it
190
that prevents us from outputting the whole thing.
191
192
On entry to this basic block:
193
t0 == the first dest word, unmasked
194
t1 == the shifted low bits of the first source word
195
t6 == bytemask that is -1 in dest word bytes */
196
197
ldq_u t2, 8(a1) # L : Latency=3 load second src word
198
addq a1, 8, a1 # E :
199
mskql t0, a0, t0 # U : mask trailing garbage in dst
200
extqh t2, a1, t4 # U : (3 cycle stall on t2)
201
202
or t1, t4, t1 # E : first aligned src word complete (stall)
203
mskqh t1, a0, t1 # U : mask leading garbage in src (stall)
204
or t0, t1, t0 # E : first output word complete (stall)
205
or t0, t6, t6 # E : mask original data for zero test (stall)
206
207
cmpbge zero, t6, t8 # E :
208
beq a2, $u_eocfin # U :
209
lda t6, -1 # E :
210
nop
211
212
bne t8, $u_final # U :
213
mskql t6, a1, t6 # U : mask out bits already seen
214
stq_u t0, 0(a0) # L : store first output word
215
or t6, t2, t2 # E : (stall)
216
217
cmpbge zero, t2, t8 # E : find nulls in second partial
218
addq a0, 8, a0 # E :
219
subq a2, 1, a2 # E :
220
bne t8, $u_late_head_exit # U :
221
222
/* Finally, we've got all the stupid leading edge cases taken care
223
of and we can set up to enter the main loop. */
224
extql t2, a1, t1 # U : position hi-bits of lo word
225
beq a2, $u_eoc # U :
226
ldq_u t2, 8(a1) # L : read next high-order source word
227
addq a1, 8, a1 # E :
228
229
extqh t2, a1, t0 # U : position lo-bits of hi word (stall)
230
cmpbge zero, t2, t8 # E :
231
nop
232
bne t8, $u_eos # U :
233
234
/* Unaligned copy main loop. In order to avoid reading too much,
235
the loop is structured to detect zeros in aligned source words.
236
This has, unfortunately, effectively pulled half of a loop
237
iteration out into the head and half into the tail, but it does
238
prevent nastiness from accumulating in the very thing we want
239
to run as fast as possible.
240
241
On entry to this basic block:
242
t0 == the shifted low-order bits from the current source word
243
t1 == the shifted high-order bits from the previous source word
244
t2 == the unshifted current source word
245
246
We further know that t2 does not contain a null terminator. */
247
248
.align 4
249
$u_loop:
250
or t0, t1, t0 # E : current dst word now complete
251
subq a2, 1, a2 # E : decrement word count
252
extql t2, a1, t1 # U : extract low bits for next time
253
addq a0, 8, a0 # E :
254
255
stq_u t0, -8(a0) # U : save the current word
256
beq a2, $u_eoc # U :
257
ldq_u t2, 8(a1) # U : Latency=3 load high word for next time
258
addq a1, 8, a1 # E :
259
260
extqh t2, a1, t0 # U : extract low bits (2 cycle stall)
261
cmpbge zero, t2, t8 # E : test new word for eos
262
nop
263
beq t8, $u_loop # U :
264
265
/* We've found a zero somewhere in the source word we just read.
266
If it resides in the lower half, we have one (probably partial)
267
word to write out, and if it resides in the upper half, we
268
have one full and one partial word left to write out.
269
270
On entry to this basic block:
271
t0 == the shifted low-order bits from the current source word
272
t1 == the shifted high-order bits from the previous source word
273
t2 == the unshifted current source word. */
274
$u_eos:
275
or t0, t1, t0 # E : first (partial) source word complete
276
nop
277
cmpbge zero, t0, t8 # E : is the null in this first bit? (stall)
278
bne t8, $u_final # U : (stall)
279
280
stq_u t0, 0(a0) # L : the null was in the high-order bits
281
addq a0, 8, a0 # E :
282
subq a2, 1, a2 # E :
283
nop
284
285
$u_late_head_exit:
286
extql t2, a1, t0 # U :
287
cmpbge zero, t0, t8 # E :
288
or t8, t10, t6 # E : (stall)
289
cmoveq a2, t6, t8 # E : Latency=2, extra map slot (stall)
290
291
/* Take care of a final (probably partial) result word.
292
On entry to this basic block:
293
t0 == assembled source word
294
t8 == cmpbge mask that found the null. */
295
$u_final:
296
negq t8, t6 # E : isolate low bit set
297
and t6, t8, t12 # E : (stall)
298
and t12, 0x80, t6 # E : avoid dest word load if we can (stall)
299
bne t6, 1f # U : (stall)
300
301
ldq_u t1, 0(a0) # L :
302
subq t12, 1, t6 # E :
303
or t6, t12, t8 # E : (stall)
304
zapnot t0, t8, t0 # U : kill source bytes > null
305
306
zap t1, t8, t1 # U : kill dest bytes <= null
307
or t0, t1, t0 # E : (stall)
308
nop
309
nop
310
311
1: stq_u t0, 0(a0) # L :
312
ret (t9) # L0 : Latency=3
313
314
/* Got to end-of-count before end of string.
315
On entry to this basic block:
316
t1 == the shifted high-order bits from the previous source word */
317
$u_eoc:
318
and a1, 7, t6 # E : avoid final load if possible
319
sll t10, t6, t6 # U : (stall)
320
and t6, 0xff, t6 # E : (stall)
321
bne t6, 1f # U : (stall)
322
323
ldq_u t2, 8(a1) # L : load final src word
324
nop
325
extqh t2, a1, t0 # U : extract low bits for last word (stall)
326
or t1, t0, t1 # E : (stall)
327
328
1: cmpbge zero, t1, t8 # E :
329
mov t1, t0 # E :
330
331
$u_eocfin: # end-of-count, final word
332
or t10, t8, t8 # E :
333
br $u_final # L0 : Latency=3
334
335
/* Unaligned copy entry point. */
336
.align 4
337
$unaligned:
338
339
ldq_u t1, 0(a1) # L : load first source word
340
and a0, 7, t4 # E : find dest misalignment
341
and a1, 7, t5 # E : find src misalignment
342
/* Conditionally load the first destination word and a bytemask
343
with 0xff indicating that the destination byte is sacrosanct. */
344
mov zero, t0 # E :
345
346
mov zero, t6 # E :
347
beq t4, 1f # U :
348
ldq_u t0, 0(a0) # L :
349
lda t6, -1 # E :
350
351
mskql t6, a0, t6 # U :
352
nop
353
nop
354
subq a1, t4, a1 # E : sub dest misalignment from src addr
355
356
/* If source misalignment is larger than dest misalignment, we need
357
extra startup checks to avoid SEGV. */
358
359
1: cmplt t4, t5, t12 # E :
360
extql t1, a1, t1 # U : shift src into place
361
lda t2, -1 # E : for creating masks later
362
beq t12, $u_head # U : (stall)
363
364
extql t2, a1, t2 # U :
365
cmpbge zero, t1, t8 # E : is there a zero?
366
andnot t2, t6, t2 # E : dest mask for a single word copy
367
or t8, t10, t5 # E : test for end-of-count too
368
369
cmpbge zero, t2, t3 # E :
370
cmoveq a2, t5, t8 # E : Latency=2, extra map slot
371
nop # E : keep with cmoveq
372
andnot t8, t3, t8 # E : (stall)
373
374
beq t8, $u_head # U :
375
/* At this point we've found a zero in the first partial word of
376
the source. We need to isolate the valid source data and mask
377
it into the original destination data. (Incidentally, we know
378
that we'll need at least one byte of that original dest word.) */
379
ldq_u t0, 0(a0) # L :
380
negq t8, t6 # E : build bitmask of bytes <= zero
381
mskqh t1, t4, t1 # U :
382
383
and t6, t8, t12 # E :
384
subq t12, 1, t6 # E : (stall)
385
or t6, t12, t8 # E : (stall)
386
zapnot t2, t8, t2 # U : prepare source word; mirror changes (stall)
387
388
zapnot t1, t8, t1 # U : to source validity mask
389
andnot t0, t2, t0 # E : zero place for source to reside
390
or t0, t1, t0 # E : and put it there (stall both t0, t1)
391
stq_u t0, 0(a0) # L : (stall)
392
393
ret (t9) # L0 : Latency=3
394
nop
395
nop
396
nop
397
398
.end __stxncpy
399
400